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Abstract

The purpose of this paper is to discuss a basic reliability analysis method that is beneficial to fusion component test
planning. Emphasis is placed on formulating the problem to be solved and on determining the required test time and
the number of test articles needed to verify a performance or a failure criterion. While an increasing failure rate is
likely to be the case for the fusion component resulting from irradiation effects, analysis is performed to show how
the life characteristics impact the test requirements. Taking into account the available data from similar technology
experiences, calculations based on the Bayesian approach indicate a possible saving on the test time requirement.

1. Introduction

The best way to measure system reliability is to test
completed products or components, under conditions
that simulate real life, until failure occurs. One simply
cannot assess reliability without data, and of course, the
more data available, the more confidence one will have
in the estimated reliability level. Unfortunately, exten-
sive testing is often considered undesirable because it
results in expenditure of too much time and money.
Thus, the need for “do-it-smarter” {1] consideration in
developing the testing program becomes an important
factor. The objectives of this paper are to utilize
reliability concepts and analyses: (a) to determine
meaningful guidelines for defining an effective and self-
consistent test program for development of fusion com-
ponents, (b) to serve as a tool for defining the testing
requirements (on the major characteristics of the testing
facility), and (c) to evaluate the need for fusion testing
in large test volumes.

The testing process involves combining all sources of
knowledge structurally, redefining and solving the prob-
lem as the test proceeds. Clearly, the goal is to produce
the best possible fusion technology components, so that
a high component reliability and subsequently a high
plant availability can be achieved. In the development
of a test plan, an understanding of the types of data
and accuracy of the data to be obtained are required in
order to achieve a reliability goal. Of course, this preci-
sion requirement determines how many test articles
must be placed in the test and how long the test must be
performed. If tests are directed toward the design risk
areas, higher reliability can result from less test effort.
Implementing the failure mode, effect and criticality
analysis [2] allows the test efforts to be directed toward
the highest risk areas. Furthermore, to maximize the
benefits of the test efforts, emphasis should be placed
on monitoring the component selection/design consid-
erations, as opposed to running them and counting the
number of failures. The real intent of the test is to
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identify design weaknesses, flaws and failure modes and
then fix them. This has led to a testing strategy for
fusion nuclear components involving ‘scoping, perfor-
mance evaluation and reliability growth phases as pre-
sented in Ref. [3].

Major input to the preparation of the test plan can be
gained from a review of available data from similar
technology experience. Such data may help the designer
to draw a reliability level at the design stage, to define
a testing reliability goal, and may also pinpoint potential
trouble areas. Moreover, this available information can
be summarized in the prior information before the start
of the experiment based on the Bayesian method [4]. The
theory combines actual testing data with such prior
information to get new estimates (believed to be more
precise) or Bayesian confidence limits for the parameters
with relatively little testing effort. Although a Bayesian
analysis strongly depends on the validity of the mode]
and prior distributions, analysis is performed here to
show how the best-judged available information can be
used to reduce the cumulative test time requirement.

2. Data requirements
2.1. Data needs for availability analysis

The minimum parameters of interest (such as in the
case of exponential life distribution) for availability
assessment are mean time between failures (MTBF) and
mean down time (MDT). The accuracy of the availabil-
ity analysis is a function of the quality of the data from
the device being modeled; the precision is limited by the
level of data available. These data obtained from non-fu-
sion experience or estimated based on the judgement of
experts familiar with the development of similar compo-
nents are useful for rough estimates of plant availability
(at the design stage) or, as is more commonly the case,
for apportionmentof the availability of each component
to achieve the plant target availability. In most cases, the
simulation models require some data elements in addi-
tion to MTBF and MDT, such as component failure
characteristics and the associated probability density
function, or a distribution model. (Often, one is forced
to select a distribution model without having enough
data actually to verify its appropriateness.) Building up
these data banks is essential, as all the methods of the
computation would be useless if we did not have at our
disposal numerical values for the various parameters
(failure rate, mean down time, etc.).

One difficult problem associated with the reliability
measure from a practical standpoint is the selection of

a distribution model. Unless one has considerable test
data, it is difficult to determine whether the proper
model is, for instance, Weibull, log normal, or gamma.
A faulty assumption of failure rate characteristics can
cause incorrect reliability predictions and interpretation
of test results. A fusion component might have a de-
creasing failure rate during the beginning of its life (a
typical behavior for commercial products) and an in-
creasing failure rate as the time proceeds. Therefore, in
addition to obtaining hard data to demonstrate compo-
nent reliability, the test should also be designed to
accommodate the component life characteristics.

2.2. Data needs for a probabilistic design methodology
to design reliability

Special technical publications on the statistical as-
pects of material strength data have revealed, for exam-
ple, that the probability distributions of the ultimate
tensile, yield and endurance strengths of steel are nor-
mally distributed and that the strength properties of
structural alloy materials often tend to follow a log
normal distribution [5]. However, manufacturing pro-
cesses such as heat treatment and surface finishing and
temperature could alter this distribution function. For
instance, the Weibull distribution is found for ferrous
materials which have undergone heat treatment. Fur-
thermore, for a given material with a certain surface
finish the distribution function may be Weibull, but an
alteration surface finish might cause the distribution to
change to the largest extreme value distribution. On the
other hand, the load (or stress) is by no means con-
stant. Such variations might be due to the needs of
different applications (such as load after operation un-
der normal conditions), instantaneous transient force
from plasma disruption, or short-term unexpected
power exertion. These varied natures of strength (used
to indicate any agency resisting failure) and stress (used
to indicate any agency inducing failure) distributions
disclose a new design methodology called probabilistic
design [4,6].

For a given component that has a certain stress-
resisting capacity, the concept of reliability is that, if
the stress induced by the operating conditions exceeds
this capacity (strength), failure results. In the proba-
bilistic design approach, this reliability is determined
by the strength and stress random variables. In the case
of normal density functions, the reliability R is given
as:

1 [
R= J e~ ?2dz (1
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Fig. 1. Reliability as a function of the safety factor for differ-
ent variations of strengths and loads.

where z; and z are defined as:
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where p; is the mean value of the stress, g is the mean
value of the strength, g, is the standard deviation of the
stress, and o is the standard deviation of the strength.
Fig. 1 shows that the variation in reliability is related to
different magnitudes of variability in strength and stress
random variables. Also shown in the figure is the
required blanket module reliability for achieving an
in-vessel blanket system reliability of 0.9 in the case
where there are 120 modules in the blanket system [3].

For a well-characterized operating condition (such as
oL =5%), the required standard deviation of the
strength is about 10% for a safety factor of 1.5, and
about 17.5% for a safety factor of 2.5 (where safety
factor is defined as pg/p, ). In contrast, for an ill-charac-
terized operating condition (such as o, =20%), the
accuracy requirement increases more significantly in the
lower safety factor. Furthermore, the reliability can be
limited if the safety factor is not adequate. The results
show that, in order to achieve a blanket system reliabil-
ity of 0.9, the minimum required safety factor is about
1.65 (100% accuracy requirement on the mean of the
strength). It is evident that we need a high degree of
accuracy, not only for the mean value but also for the
standard deviation (as in the case of normal distribu-

tion) in order to arrive at a good estimate of the
reliability. A more stringent requirement (a higher
statistical significance) means that a larger sample size
(a larger number of test articles) is needed in the test.

3. Failure modes, effect and criticality analysis
(FMECA) implication

Identification of the failure modes and consequences
at the levels of component, submodule, or even element
(described as a constituent) have a profound effect on
the reliability and maintainability of the plant. A given
component (such as a neutral beam injector) may have
a poor failure rate; however, this effect can be mitigated
or nullified by incorporating redundancy into the design
(which will have the disadvantage of reducing the
breeding blanket coverage). Certain failure modes can
be tolerated if the reactor can be operated in a degraded
mode (lower power output) until the next available
maintenance period. On the other hand, some failures
(e.g. loss of the impurity control) will cause a chain of
events that has a detrimental effect on many compo-
nents. Through these failure modes, effect and critical-
ity analysis processes, identified as FMECA [2,6], those
critical constituents which contribute most to the plant
failure can be recognized. An appropriate analysis con-
sists of construction of an overall plant reliability block
diagram as well as a quantitative calculation based on
the constituents’ failure rates. A severity factor indicat-
ing the seriousness of the effect can be added to critical-
ity analysis to differentiate failures which result in
plant unavailability from those which are tolerable. The
FMECA process gives the designer insight into the
reliability structure of a complex system, and underlines
the comparative strengths and weaknesses of the vari-
ous subassemblies of the system.

At the beginning stage of fusion testing, a major
emphasis of the test should be given to developing
critical constituents at power generating plant operating
conditions. In particular, development testing of those
constituents which are elements of a large and expan-
sive component has significant benefits for the eco-
nomic aspect. For example, a past study shows that
blanket designs involving a large number of welds have
the largest failure rates [7]. While welds are unavoidable
in blanket designs, a scoping test and a reliability
growth test are essential to increase blanket reliability.
The scoping test can be formulated as a selection device
with the goal of identifying the best manufacturing
technique in conjunction with the best quality assurance
process for the welds in the fusion environment. The
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reliability growth test requires an iterative procedure of
analyze/fix/test, aiming to improve the optimum reli-
ability of the concept.

4. Test duration

Test duration, such as cumulative test time, has been
used as a test requirement for measuring a component’s
reliability at a specified confidence level. For example,
if the Poisson distribution is used to design tests in
which a component’s MTBF is greater than that spe-
cified, the MTBF can be demonstrated at a confidence
level of 80%. This leads to a total test time of 1.609
times the specified MTBF, assuming no failures occur
during the test, or 2.994 times the specified MTBF if
one failure occurs during the test. In this case, the
components are assumed to experience a constant fail-
ure rate and, consequently, this required total test time
could be spread between several test components. How-
ever, for a component following the Weibull distribu-
tion, the constant failure rate assumption is often
inappropriate; hence, the test time cannot be spread
arbitrarily between the components under test. The
required test time per test unit under a test is estimated
according to the Weibull scale parameter 4 and the
sample size n as [8]

=] @

where B is the Poisson distribution confidence factor
oA . . .

at number of failures », ¢ is the confidence interval and

k 1s the characteristic life factor, which is estimated

as:

1

K= Fa= ) ®

where T is the gamma function.

A calculated summary of the individual test time
requirements to achieve an 80% confidence level with
different component failures as a function of sample
size is shown in Fig. 2 for different shape factors. A
shape factor of b >1 indicates an increasing failure
rate, b <1 a decreasing failure rate (early-life failures)
and b =1 a constant failure rate, as shown in Fig. 3.
(This ability to describe increasing or decreasing failure
rates contributed to making the Weibull distribution
popular for life data analysis.) The individual test times
required for simultaneously testing 5 and 10 test articles
are respectively about 0.77 and 0.45 times the MTBF
(3.85 and 2.25 years for MTBF = 5 years), for a shape
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Fig. 2. Test time per test article as a function of number of
test articles for different shape factors.
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Fig. 3. Weibull life distribution failure rate characteristics for
different shape factors.

factor b = 2. If one failure occurs during the test, these
individual test times increase to 1 and 0.6 x MTBF,
respectively. The test time per test unit drops signifi-
cantly as the sample size increases for a shape factor
less than 1. This implies that, if a large sample size was
used to detect the early-life characteristics, it would
result in a tremendous saving in the test time required.
Test time savings resulting from one additional sample
decrease as b increases. When assessing wear-out con-
cerns, it is normally better to test a smaller number of
units to the approximate mean life usage than to test a
larger number to only a portion of this usage.
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5. Requirements on number of test articles (sample
size)

In planning the experiments, test program planners
are invariably confronted with the question: “What
sample size do I need to verify a mean or a failure
criterion?” Frequently, the sample size is determined by
non-statistical considerations, such as limited budget or
time, and by the number of units which are in service or
are available for a test. When sample sizes are small, it
is difficult to resolve whether the observed important
differences are real (convincing). Furthermore, a small
sample size makes the statistics too dependent on the
precise value of a few individual observations or a low
precision in estimating both sample mean and variance.
In practice, one needs enough data (therefore, a large
sample size) to produce both statistically convincing
and practically significant observations.

There are several broad categories of problems for
which systematic procedures have been developed to
exercise control over sampling errors. Here, we focus
on estimation and selection problems. Both are the
basic test elements in fusion technology testing.

5.1. Estimation problems

This refers to problems in which we wish to deduce
that the true but unknown value of a specified popula-
tion parameter is contained within a bounded interval
of given width. An example parameter of interest could
be the mean of the primary stress intensity of a weld
under irradiation, or the mean of the tritium breeding
ratio of one particular blanket concept. In the estima-
tion of parameters, sample sizes are selected to ensure
satisfactory precision.

The sample size for estimating the mean ¢ within a
factor of f with 1007% probability, assuming an expo-
nential distribution, is approximated as [9]

n 2 [K; [In( /)] (6)

where K7y is the [100(1 + 7)/2]th standard normal per-
centile. Fig. 4 shows the required sample size for a
range of f at different confidence levels. This simple
approximation shows that a sample size of 50 is needed
to obtain a percentage deviation of an unknown mean
contained in the + 20% range at a confidence level of
90%, and of 11 for a confidence level of 75%. The
required sample size is prohibitively large when a high
precision is demanded (n =423 for a mean to be esti-
mated within 10%, with 95% probability). A more
refined method given by Mace [10] shows that a slightly
larger sample size is needed to achieve the same spe-
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Fig. 4. Number of test articles required as a function of
uncertainty band for different confidence levels.

cified expected length of confidence intervals. As shown
in the same figure, a sample size of 67 is needed, as
compared to 50, for the mean to be estimated within
20% at a 90% confidence level.

5.2, Selection problems

Previous calculations indicate that 24 sample obser-
vations from each of three concepts should be made so
that a best concept can be selected, for a ratio of 1.75
between the largest and the second largest means and a
probability of correct selection of at least 95% [3,11].
According to the method proposed, the required sample
size increases as the power of discrimination (the ratio
of the largest mean to the second largest mean) de-
creases and becomes practically uneconomical (66 sam-
ples if the discrimination power is set at 1.4).

6. Application of Bayesian approach to testing

The Bayesian approach [4] takes account of additional
information of a subjective nature, such as confidence in
the manufacture or confidence in well-known older
equipment from which the equipment under test has
been derived. This subjective information is integrated
with the objective data (testing data) by assigning a prior
distribution to the parameters to be evaluated. This
alleviates the necessity for a large amount of hard data,
obtained by testing, in order to demonstrate a reliability
level with a high degree of confidence. However, in
general our subjective knowledge is somewhat vague,
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and it is impossible to specify a prior distribution very
precisely. Furthermore, we have a large latitude in the
selection of a priori distribution. The simplest case is
using natural conjugates as a priori distribution, where
the introduction of additional information does not
modify the type of the distribution but simply alters the
parameters of that distribution. In this case, the natural
conjugate of an exponential distribution is a gamma
distribution.

Recommended leakage failure rates based on non-
fusion operating experience failure rates subjected to
K-factor modification were published for various mate-
rial and coolant combinations [12]. For example, a
leakage (defined as coolant flow into the vacuum vessel
sufficient to trigger a plasma disruption) failure rate
value of 7.7 x 102 h~! per meter tube with an error
factor of three (defined as the square root of the 95%
confidence failure rate divided by the 50% confidence
failure rate) is suggested as a reference for use of
preliminary ITER design and safety studies until fur-
ther failure testing produces more accurate failure data.
Here, the Bayesian approach is used to estimate the
cumulative test time (in terms of tube length in meters
times hours) required in a truncated sequential test to
verify that the probability of the true failure rate falling
within the range 7.7 x 107%/3 to 3 x 7.7 x 10~° is equal
to 95%. Notice that the test results can also be used to
modify the estimated failure rates.

Fig. 5 shows the calculated required cumulative test
time as a function of the number of failures for different
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Fig. 5. Cumulative test time requirement for demonstrating
the 95% probability of 7.7 x 10~ °%/3 < failure rate <3 x 7.7 x
107 in a Bayesian truncating sequential test as a function of
number of failures for different gamma shape factors.

shape parameters in the gamma distributions. The re-
sults show that the required cumulative test time (ac-
tual test time + scale parameter) ranges from 1.597 x
10% to 3.127 x 108 m h for zero to two failures, by
assuming a shape factor equal to one (which gives a
scale parameter of 9 x 107), and 2.41 x 10® to 3.8 x
108 m h for the same range of number of failures by
assuming a shape factor of two (which gives a scale
parameter of 2.2 x 10%). It also shows that the test
should be stopped, because of the inaccurate prior
information, if the test results cross the termination
point as shown in Fig. 5. The Bayesian estimate calcu-
lated from the test result at the test termination point is
1.8 x 10-% h~! per meter of tube length. Compared to
the cases in which no prior information is considered,
the required cumulative test times for demonstrating
that the probability of the true failure rate being less
than the Bayesian estimate equals 95% can be reduced
by 15-180%. Furthermore, the analysis shows that
the failure rate range as provided in Marshall and
Cadwallader (1993) is more appropriately described
by a gamma distribution with a shape factor equal to
two.

7. Summary

From the design reliability concept point of view, the
magnitude of the variation plays an important role in
determining the system reliability, particularly where
the safety margin is not ample. Consequently, the test
must be formulated not only to measure the mean value
but to quantify the variation. A best component (or
element) is chosen according to the largest mean load-
resisting capacity combined with the smallest variation
associated with this mean capacity. This implies that a
large number of test articles in the test is required in
order to assure a high accuracy.

Furthermore, the test must be constructed not only
to count the failure rate but to detect component failure
characteristics. This leads to a requirement for a longer
test time per test article, when the failure rate increases
as the operating time proceeds. An example calculation
showed that each test article should be tested to about
0.45 x MTBF for a Weibull shape factor of 2 to accept
a specified MTBF at 80% confidence level, assuming a
zero failure occurrence and a parallel test of 10 test
articles. If one failure occurs during the test, individual
test time increases to 0.6 x MTBF.

The number of test articles to be placed in the
test depends on the precision level of the parameter to
be estimated, the confidence level requirement, testing
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objectives, and the component life characteristics. If
the test is to ensure with a confidence level of 90% that
the magnitude of the uncertainty in the mean (such
as the tritium breeding ratio of one particular blan-
ket concept) is to be contained within + 20%, the
required number of test articles is about 50 (for
Poisson distribution). On the other hand, it requires
a test involving 24 test articles per concept in order
to select the best concept within three design options
with 95% confidence and a discrimination power of
1.75. A lower discrimination power (i.e. a small differ-
ence between different concepts) requires a larger
sample size.

If it were possible to collect data from currently
available fusion (or fission) technology experience, it
would indeed be very useful in saving test time based on
the Bayesian approach. An example calculation showed
that a maximum saving at a factor of about two is
possible to demonstrate an available stated water leak-
age failure rate.
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