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Background & Objectives

Evaporation of liquid first wall surface will contaminate
the plasma core.

- Edge plasma analysisis reguired to examine impurity
lon penetration.

- Evaporation rate employed in edge plasma analysis should
be consistent with plasma heat flux (mainly Bremsstrahlung
& lineradiation) and liquid flow.
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Development of comprehensive analysis code
for liquid first wall
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Geometry and Parameters

Parameters in this analysis follows
ITER design.

o Liquid flow :
The location of liquid surface is same as
FW of ITER. Working fluid is Flibe.

* Plasma : 2
The temperature and density profiles were 7
parabolic,
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Poloidal Distribution of Radiation Wall Loading

Emissivity £(V) of radiation were estimated using ‘IONMIX’ code.
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a®(v), a” (v), a™(v): Cross sections for bound-bound,
bound-free, free-free transitions

Radiation flux W(v) :
eWv,R) (R,~R)
4R, -R,| R,~R,|

This is numerically integrated, taking the consideration of shade due to
center post.

W(V,R)) = [ [, dV (2)



Heat Flux (Bremsstrahlung & line radiation) on First Wall

Surface Heat Flux (MW/rT‘?)
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Power Deposition Rate

=

o
=
o

™ T
|

o]
T —TTTT
1

[EEN
o
o
A R
l

Attenuation length (microns)
=
o

Power Deposition Rate (W/mg)
|_\
) o

=
o

10_? R | Ll Ll M Lo
10 10° 10° 10° 10* ' | ' | ' '
0 0.001 0.002 0.003
X—ray energy (eV)
Distance from liquid surface (m)
Attenuation length of X-ray in Flibe Power deposition rate in Flibe flow

(Calculated by M.Y oussef )



Temperature Profile in Liquid Flow

Temperature profile is estimated
based on the assumptions:
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* slug velocity profile
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* N0 convection, no turbulence
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Evaporation Rate ( Flibe flow )

Surface temperature (C)
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2-D scrape-off layer transport code (UEDGE)

e ULDGE code includes much of the relevant physics:
— Classical plasma transport along B, anomalous across B
— Multi=charge state impurity species transport and radiation
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Conclusions

» Code to evaluate evaporation rate of liquid surface is developed.

« Accurate profile of evaporation rate will be introduced
to UEDGE analysis in the near future.

Future work

- complete comprehensive analysis code for liquid first wall

- optimize the design of liquid first wall



Processes to be Modeled for Liquid First-wall in Fusion
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Comprehensive analysis for Liquid First Wall

D transport code

article .
01 [ cod
CUGE PLASMA WSEBEE o Radiation heating code
) |
Particle
FLOWING Temperature profile of flow & evaporation
LIQUID Flibe ) calculation
Current status



Shorter magnetic connection-lengths give lower impurities uL-

[] Effect of connection length investigated
in UEDGE simulations by increasing the
ratio B_pol / B_tot in the same ITER
geometry
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[] More rapid impurity parallel loss tends

_ _ _ Base ITER
to decrease impurity density at core T case
Reduced
[ However, same increased parallel loss toroidal
makes hydrogen edge-plasma narrower B-field
[] Net effect is still lower impurity density, 0' | S
but not linearly with connection length 0 0.5 1.0

Core-edge fluorine density (1e17 /m**3)
o
o1

Normalized connection length

(here fluorine gas flux at wall is 8e18 1/m**2 s;
_ _ scaling results give 1% impurity for a flux of
(calculations by Tom Rognlien) 4e19 1/m**2 s for the ITER base case)



Impurity core-penetration weakly dependent on wall position u
but decreases with gas temperature L

[ UEDGE 2-D modeling in ITER geometry
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calculates self-consistent edge-plasma /g\o
and impurity profiles Tgas =10 eV
0.57
Location of the liquid wall relative to the
tokamak magnetic separatrix is varied 1eV —

A fluorine gas source at a given
temperature located at the wall
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The core impurity density slowly
decreases with increased wall separation
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Wall position from separatrix (cm)

Changes in gas temperature have
significant effect on impurity density

Core-edge fluorine density (1e17 1/m**3)
o
N

(here fluorine gas flux at wall is 8e18 1/m**2 s;
scaling results give 1% impurity for a flux of



