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Background & Objectives

  Evaporation of liquid first wall surface will contaminate 
  the plasma core. 

     - Edge plasma analysis is required to examine impurity 
        ion penetration.

     - Evaporation rate employed in edge plasma analysis should 
       be consistent with plasma heat flux (mainly Bremsstrahlung 
       & line radiation) and liquid flow. 

Development of comprehensive analysis code 
for liquid first wall



Edge Plasma Liquid FlowCore Plasma
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Evaporation Rate
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Geometry and Parameters 

Parameters in this analysis follows 
ITER design.

• Liquid flow :
  The location of liquid surface is same as 
  FW of ITER. Working fluid is Flibe.

• Plasma :
  The temperature and density profiles were
  parabolic,
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Poloidal Distribution of Radiation Wall Loading 
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This is numerically integrated, taking the consideration of shade due to
center post.



Heat Flux (Bremsstrahlung & line radiation) on First Wall 

Total heat flux on liquid wall surface X ray and UV spectrum of  the radiation losses
 from main plasma at midplane.
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Power Deposition Rate 
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Power deposition rate in Flibe flow



Temperature Profile in Liquid Flow

Temperature profile is estimated
based on the assumptions:

• slug velocity profile 

• no convection, no turbulence
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Evaporation Rate  ( Flibe flow )

Surface temperature profile Evaporation rate profile
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2-D scrape-off layer transport code (UEDGE)

•



Conclusions

• Code to evaluate evaporation rate of liquid surface is developed.

• Accurate profile of evaporation rate will be introduced 
  to UEDGE analysis  in the near future.

Future work

- complete comprehensive analysis code for liquid first wall 

- optimize the design of liquid first wall



Processes to be Modeled for Liquid First-wall in Fusion
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Comprehensive analysis for Liquid First Wall 

Radiation



Shorter magnetic connection-lengths give lower impurities

Effect of connection length investigated
in UEDGE simulations by increasing the
ratio B_pol / B_tot in the same ITER
geometry 

More rapid impurity parallel loss tends
to decrease impurity density at core

However, same increased parallel loss 
makes hydrogen edge-plasma narrower

Net effect is still lower impurity density,
but not linearly with connection length
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Impurity core-penetration weakly dependent on wall position
but decreases with gas temperature

UEDGE 2-D modeling in ITER geometry
calculates self-consistent edge-plasma
and impurity profiles

Location of the liquid wall relative to the
tokamak magnetic separatrix is varied

A fluorine gas source at a given
temperature located at the wall

The core impurity density slowly
decreases with increased wall separation

Changes in gas temperature have
significant effect on impurity density
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