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Data from Tietz & Wilson (1965), Conway (1984), Buckman (1994), 
Zinkle et al (1998), ITER MPH, and Aerospace Structural Metals Handbook (1969)
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Gubbi (1996), ITER MPH, and Aerospace Structural Metals Handbook (1969)
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Summary of Recrystallized W-(5-10%) Re Properties (typo in earlier VG)
Ultimate Tensile Strength (unirradiated)
σUTS(MPa)=377.9 + 0.03207*T - 1.955x10-4*T2 + 5.129x10-8*T3  (T in ˚C) –use pure W values

Yield Strength (Unirradiated)
σY(MPa)= 94.2 - 0.0214*T -2.12x10-6*T2 -7.48x10-10*T3  (T in ˚C) –use pure W values

Elongation
etot(%)=20.8 + 0.053*T-2.18x10-5*T2  (T>500˚C) --use pure W values

Elastic constants
EY (GPa) =398 - 0.00231*T  - 2.72x10-5 T2 (T in ˚C) --pure W values; W-25Re E(20˚C)=410 GPa

ν=0.279 + 1.09x10-5 T  (T in ˚C) W-25Re ν(20˚C)=0.30, G(20˚C)=159 GPa

Thermophysical properties
αm (10-6/˚C)= 3.9 + 5.8x10-5*T + 5.7x10-11*T2  - 2.0x10-14*T3 (T in ˚C)  --use pure W values

CP (J/kg-K) =  128+ 0.033*T - 3.4x10-6*T2 ??? (T in ˚C) --use pure W values

Kth (W/m-K)~85 W/m-K (1000-2400˚C) --conductivity decreases with increasing Re content

Recommended operating temperature limits (structural applications)
Tmin = 800˚C  (due to rad.-induced increase in DBTT at low Tirr)
Tmax = 1400˚C (Li, Pb-Li corrosion/chemical compatibility and thermal creep)



J.A. Shields, Jr. and E.L. Baker,
Adv. Mater. & Processes (Jan. 1999) 61.

Volatile oxidation of Mo-based alloys
(see accompanying APEX presentation by S. Sharafat and N.M. Ghoniem)



Oxygen Pressure Limits for V, Nb and Ta Alloys

• Oxygen pickup in the Group V metals causes matrix hardening, which in turn produces
an increase in the ductile-to-brittle transition temperature (DBTT)

- oxygen concentration must be below ~1000 ppm to keep Charpy DBTT below room
temperature in vanadium (Loomis & Carlson, 1959)

- the oxygen solubility limit in vanadium is ~1-3 wt.% at T=20-900˚C

• All of the Group V metals have high affinity for oxygen; based on thermodynamics
alone, extremely low oxygen partial pressures are required to prevent oxygen pickup

- the vanadium/vanadium oxide solvus occurs at 10-47 atm for T=525˚C and at 10-36 atm at
T=725˚C (Worrell & Chipman, 1965)

• The oxygen pressure limits will be determined by kinetic considerations (oxygen
diffusion through oxide scale, flux of impinging oxygen atoms)

- significant oxygen pickup has been observed in V-Cr-Ti alloys during creep testing in an
“ion-pumped” vacuum system at 600˚C (Chung et al., 1994)

Material Exposure time Oxygen (wt. ppm) Carbon (wt. ppm) Nitrogen (wt. ppm)
V-4Cr-4Ti (BL-47) As-fabricated 350 200 220
V-4Cr-4Ti (BL-47) 1 h (Ta wrap) 520 260 200
V-4Cr-4Ti (BL-47) 213 h (Ta wrap) 520 270 190
V-4Cr-4Ti (BL-47) 541 h (Ta wrap) 770 --- 200

V-10Cr-5Ti (BL-43) As-fabricated 230 100 31
V-4Cr-4Ti (BL-47) 162 h (Ti wrap) 370 --- 99
V-4Cr-4Ti (BL-47) 243 h (no wrap) 600 --- 120



Effect of interstitial solute additions on the (un-notched)
bend transition temperature of vanadium.

Tietz and Wilson (1965), based on data from Loomis and Carlson (1959)

Similar embrittlement behavior also observed for V-4Cr-4Ti alloys (e.g., B.A. Pint et al., 1998)



Oxygen Pressure Limits for V, Nb and Ta Alloys, cont’d

• The observed oxygen contents can be significantly lower than thermal equilibrium
values

- Protective surface oxide film at low temperatures (logarithmic oxide film growth at very
low temperatures; parabolic growth at moderate temperatures, >400˚C in vanadium);
however, linear (rapid) growth occurs at high temperature

- The oxygen impingement flux is strongly reduced at low oxygen partial pressures

• Creation of a monolayer of chemisorbed oxygen on Group V metals at T>400˚C
requires~1 Langmuir exposure (10-6 torr-s)

• The oxygen impingement flux is JO=PO(2πmORT)1/2, assuming an equilibration constant
of unity

§ A protective oxide surface film initially forms, except at very low oxygen partial
pressures (<<10-6 torr) and/or high temperatures

§ A high oxygen content (sufficient for embrittlement) exists at depths beyond the oxide
scale layer (Natesan et al. 1998, etc.)



Tietz & Wilson (1965)

Tantalum oxidation shifts from parabolic to linear growth above ~600˚C



§ The kinetics for oxygen pickup in vanadium alloys is controlled by the protective oxide
growth rate
- the V-4Cr-4Ti activation energy for oxygen diffusion is ~130 kJ/mol (Nakajima et al. 1993, etc.),
whereas V-4Cr-4Ti oxide growth has an activation energy of ~180-200 kJ/mol (Uz et al. 1997, etc.)

Temperature Oxygen diffusion depth (104 h) Oxide thickness (assum. parabolic growth)
500˚C 0.5 mm ~0.01 mm
600˚C 1.6 mm ~0.07 mm
700˚C 3.8 mm ~0.4 mm

• The following oxygen pressure limits for Group V metals are obtained using the
assumptions that subsurface incorporation of the chemisorbed oxygen and matrix
oxygen diffusion are not rate-limiting steps (valid for high temperatures and low pO
levels)

- Additional assumptions were planar geometry, 3 mm slab thickness, oxygen ingress from one
side only

Exposure time to achieve listed oxygen content
Oxygen partial pressure 100 wt.ppm O 1000 wt.ppm O

10-8 torr 94 h 940 h
10-10 torr 9400 h 94,000 h (11 yr)

• In conclusion, oxygen partial pressures below 10-11 torr would be sufficient to keep
oxygen pickup to acceptably low levels in Group V metals for expected structural
material lifetimes (10 to 50 years)



Maximum temperatures of structural alloys (bare walls) in contact
with high-purity liquid coolants, based on a 5 µm/yr corrosion limit

Li Pb-17 Li Flibe
F/M steel 550-600°C [1,2,3] 450°C [1,2,9 ] 700°C ?

304/316 st. steel [14]
V alloy 600-700°C [1,4,5] ~650°C [1,10] ?

Nb alloy >1300°C [6,7] >600°C [10]
(>1000°C in Pb) [11]

>800°C [15]

Ta alloy >1370°C [6,7] >600°C [10]
(>1000°C in Pb) [11]

?

Mo >1370°C [6,7] >600°C [10] >1100°C? [16,17]
W >1370°C [6,7] >600°C [10] >900°C? [16]

SiC ~550°C ? [8] >800°C ? [12,13] ?
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Chemical Compatibility of Structural Materials with Molten Tin (static tests)

Nb: no corrosion observed at ~600˚C
chemical attack occurred at 800˚C [1] and 1000˚C [2,3]

Ta: chemical attack observed at both 600-630 [1,4] and 800˚C [1]
intergranular penetration observed at 1000˚C [2,3,5]

Mo: minimal corrosion observed below ~600˚C [4]
chemical attack observed at both 630 and 800˚C [1]
significant corrosion (predominantly intergranular) observed at 1000˚C [2,3-5,6]
-1.7% weight loss after 340 h at 1000˚C [4,6]

W: good chemical resistance at 630˚C; moderate attack at 800˚C [1]
Very little corrosion (10 ppm weight loss) observed after 40 h at 1000˚C [6]
moderate corrosion (<5 µm) observed after 100 h at 1000˚C [3]

Austenitic, Ferritic stainless steels: rapid attack at temperatures above 400-500˚C [7]

SiC: “no interactions detected” for SiC exposed to Sn-Pb-Bi mixture at 760˚C [8]
References
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 Summary of maximum temperatures of structural alloys (bare walls) in contact
with high-purity liquid or gaseous coolants, based on a 5 µm/yr corrosion limit

Li Pb-17 Li Sn-20 Li
(pure Sn)

Flibe He*

F/M steel 550-600°C 450°C ~400°C 700°C ?
304/316 st. steel

--

V alloy 600-700°C ~650°C ? ? ~600˚C?§
Nb alloy >1300°C >600°C

(>1000°C in Pb)
800-850°C >800°C ~600˚C?§

Ta alloy >1370°C >600°C
(>1000°C in Pb)

>600°C
(>900°C/Sze)

? ~600˚C?§

Mo >1370°C >600°C >700°C
(1000°C/Sze)

>1100°C? ~1100°C **

W >1370°C >600°C ~1000°C >900°C? ~1100°C **
SiC ~550°C ? >800°C ? (>760˚C) ? --

* assumes 1 appm O in 50 MPa He gas
** see accompanying APEX presentation by S. Sharafat and N.M. Ghoniem

§ the temperature limit for vanadium and other Group V metals in helium will be determined by oxide dissolution
and oxygen absorption kinetics; recent work (e.g., B.A. Pint et al. 1998) suggests that the temperature limit for V-
4Cr-4Ti may be ~600˚C due to interstitial oxygen hardening/embrittlement effects

dashed line (--) indicates that the corrosion-based temperature limit is higher than the structural temperature (thermal
creep) limit
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§ Lower temperature limit based on radiation hardening/ fracture toughness
embrittlement (K1C<30 MPa-m1/2)

•  Upper temperature limit based on 100 MPa creep strength (2% in 1000 h); chemical
compatibility considerations may cause further decreases in the max operating temp.


