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Convective Liquid Flow Firstwall (CLIFF) Concepts

Convective Liquid layer Design

» First Structural Wall protected by a fast moving

layer of liquid, typically 1 to 2 cm thick at 10 to
20 m/s.

Film Former
(Liquid Lithium Manifold)

* Flibe, Lithium, and Sn-Li considered

* The liquid layer:

Fast Flowing Lithium Film
Coats Inner Blanket S urface

— isinjected at (or near) the top of the reactor
chamber with an independently removable nozz
assembly

Blanket Module
(Slow Moving Lithium)

— adheres to curved structural wall by means of
centrifugal force

— serves as an integrated divertor, either film or
droplet type

— is collected and drained at the bottom of the
reactor through combination vacuum/drain port

Lithium Droplets
Collect in Reservoir
and Recirculate

 Liquid recirculated to breeder blanket based ol e Rk o e
ARIES-RS located behind the CLiFF-walll e tlesslees
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Potential and Issues of CLIFF Concepts

Potential: Removal of surface heat loads < Issue:Hydrodynamics and heat transfer

(greater than 2 MW/fpossible). Local involve complicated MHD interaction between
peaking and transients can be tolerated. flow, geometry, and the magnetic field:

: — suppression of turbulence and waves
Potential: FW surface protected from — LM-MHD drag thickening the flow and
sputtering erosion and possibly disruption

inhibiting drainage from chamber
— effects of spatially and temporally varying

Potential: Elimination of high thermal fields on LM surface stability
stresses and pressures in solid FW
components, having a potentially positive
impact of FW/Blanket failure rates

damage

Issue: Evaporated liquid can pollute core
plasma, surface temperature limits unknown

Issue: High mass flowrate requirement can

Potential: Possible reduction of structure-to: )
result in low coolanfAT or two coolant streams

breeder material ratio in FW area, with

gettering, tritium through-put, and tritium

Potential: Integrated divertor surface possible :
breeding

where CLIFF removes all heat

Issue:Neutron damage in structure is only
slightly reduced compared to standard blankets,
frequent blanket change-out required for high
power density operation

Potential: Complex tokamak D-shape and )
port penetration can be accommodated,
implementation is straight-forward
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CLIFF Research Update

Finalization of design parameters for Interim Report Calculations — Morley
Spreading of flow in channels increasing in toroidal radius (Flibe only) — Morley
Effect of temporal and spatial variations of B-field on film and jets — Morley

Effect of presence of sidewalls between modules on MHD flow characteristics (LM
only) —Smolentsev

Surface stability of LM-MHD CLiFF Flows — Smolentsev

Design Layouts — Fogarty, Nelson
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Design summary

ARIES-RS size and plasma
shape taken as design base

fusion power scaled to 4500 MV
75%a-heat radiated to FW
Average NWL = 8 MW/m2
Average FW-SHF = 2.1 MW/mz
Average D-SHF = 7.6 MW/m2

converted to single null at
bottom of plasma

Material Choices

- LiV

— Flibe/ODS Ferritic Steel
— Sn-Li/??7?7?

CLIFF Concept

Film Former

Fast Flow
Droplet
Formers

Vacuum Pumping Duct
Fast Flow/first Wall Drain




Radial Build of CLIFF Design based on ARIES-RS
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Y, of a sector module
16 sectors, 1 module per sector
Major Radius 5.52 m
Minor Radius 1.38 m
X-point Radius 4.7 m

ARIES Highlights:
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Outboard CLIFF Module
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Area available for
penetrations for modules
with straight walls,

4 sq. meters / sector

droplet generator grid
all dimensions in meters

* No side walls between modules in LM designs — liquid will flow into inter-module gap
* Flibe design can have submerged sidewalls and guiding grooves
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Blanket for CLIFF Design

o Segmented box blanket with
simple poloidal flow paths

« Organized into layers having
different lifetime and
replacement schedules

 |nsulator coating required for
low pressure for Li and Sn-Li

_=—Tenelon Borated tenlan]

ARIES-RS Layered Lithium Blanket/Reflector/Shield



CLIFF Thermal-hydraulics with ARIES-like Blanket

Lithium Sn-Li Flibe Units
Fusion Power (scaled from ARIES) 4500 4500 4500 MW
FW Flow Inlet Depth (infoutboard) 2/2 2/2 2/2 cm
FW Flow Inlet Velocity (in/outboard) 15/15 10/8 10/8 m/s
FW Volumetric Flowrate per Sector 1.11 0.66 0.66 °am
FW Mass Flowrate per Sector 543 4492 1316 kg/s
FW Pumping Power Estimate 2.01 8.83 2.45 MW
Peak Surface Temperature 464 700 597 C
Number of Outlet Streams 2 1 1
% Recycled to Blanket 41 100 100 %
FW Flow Inlet Temperature 325 400 500 C
Stream Temperature 364/60] 665 599 C
Stream Mass Flow 5.12/3.5 72 21 ton/s
Stream Volume Flow 10.5/7.3 10.6 10.6| /=
Stream Thermal Power 847/415 5006 5006 MW
Estimated Thermal Efficiency 33/39 43 39 %
Gross Electric Power (w/ M=1.15) 1902 2152 1952 MW

#assumes thermophysical properties of Tin
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Effect of Flow Area Increase in Outboard CLIiFF
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Flow expansion preliminary results
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MHD Modeling of Spatial and Temporal Field Variations

Description
 [nfinitely wide film in z-direction B X
* Applied and induced magnetic field in z-direction
with spatial and temporal variations
« Change from nozzle to free surface at x=0
» Backplate and nozzle surfaces range from electrically
insulated to thin conducting walls
» Planar or cylindrical geometry with arbitrarily
oriented gravity vector

N

Equations
B. Nozzle
ddt—l+(u ) B; :iDZBi —(ulM)B,
oH , Liquid
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Progress on Variable B Problem

« Solve for B with implicit backward-Euler method and the for hydrodynamics with
explicit projection method

« Algorithm tested on channel flow with variable applied magnetic field to calculate M-
shaped velocity profiles

UNDERWAY (ALPS MEETING)

* Implement VOF and test with solution algorithm
 Liquid film flow with 1/R spatial variation of toroidal field
 Liquid film breakup into "droplets"

FUTURE APPLICATION
3D algorithm for Telluride
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