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The Path to Ignition (Fusion)?

10 ITER
B 1,500 MWt
Capital |-
Cost |
$B
I ?
5 I
i Coal
1,500 MW
R al €
L 0..-.I-l----.-.---.-
0 : : ' L I l ! | ) 1 |
0 0.5 1.0
Ignition

Burn Parameter (Pint / (Pint + Pext))



Engineering/Manufacturing Innovations are Needed.

* Magnetic fusion is faced with the same general problem as inertial fusion and
accelerator builders, the unit cost of the next stage device must be reduced
significantly.

New Engineering Approaches

* Let engineering/cost considerations drive the design.

* Incorporate new manufacturing approaches (innovations) into the design.

* Setup Engineering/Manufacturing Initiative ASAP(Skunk Works)

* Some examples:

* R. D. Woolley: ANS Reno, 1996
* G. V. Sheffield: A new approach

* Plasma heating and power supplies
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Better, Faster and Cheaper Fusion

« The goal of developing radically better fusion systems is strongly
advocated.

- Achieving the APEX goals is an important/critical part of making fusion
economically attractive
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Experience with Li Coated Limiter(First Wall) on TFTR
at High Power Density

First Wall Power Density
<Pnp> =8 MW/100m?2
<Pplasma> = 42 MW/100m=
Pplasmapeak ~ 30MW/(~1m2)
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DULLOP: Li Aerosol Contross Influxes and Increases
Performance Nonperturbmg and Controllable
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ts Li Preferentially into the Scrape-off
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DOLLOP : Initial Effects of Laser-induced
Li Aerosol on Ohmic Discharges
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« Deposition controlled optically
ForOH

e 5% of Li to Plasma - 95 % to SOL

(<<l%oflis " GuriynNB)

o Plasma reaction benign
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DOLLOP Has Led to Enhanced and Sustained

Performance with No Harmful Effects
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A Few Possibilities ...
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Gr. ater than 90% Radiated Po ‘er was Reached with Kr
Mantle in High fi Plasmas with no Decrease in g
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« Radiative mantle is a critical element in surpassing limiter power handling constraint
« Radiative mantle suppressed carbon blooms for record D-T fusion yield of 7.6 MJ.
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Radiating Mantle Using Krypton Facilitated Record Fusion

Energy on TFTR
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Plasma Interface Participants

Lee Berry
Dale Meade
Ralph Moir
Mike Ulrickson
Bob Woolley
Clement Wong

Analysts/modelers



Plasma/First-Wall Interface Philosophy

Initial Stage

- Encourage (allow) innovation that will lead to radical engineering solutions

,\: What is the "ideal" first wall?
\ Don't rule out solutions with high evaporation, mists, etc.
+ |ldentify potential benefits/problems
« |dentify "zealots"
Second Stage

- begin quantifying issues, connect to experience, develop analysis
models



Plasma/First-Wall Issues

FW Surface Temperature
evaporation, mass ejection
impurity injecticn
radiation losses (good/bad), spectrum
fuel depletion

FW Electrical Conductivity
eddy currents
penetration needed for control fields
penetration to be avoided for wall stabilization of kinks

impact on liquid flow
FW Configuration
plasma heating/current drive access

control coils
diagnostics/control sensors

Develop methodology to assess criticality of issues



