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BACKGROUND

Thin film/Porous Wall Concept

(Liquid-infiltrated wall + thin film)

Porous
wall ,/ Coolant

Continuous
thin film
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POTENTIAL ADVANTAGES

Eliminate film drop. Turbulence on inner wall side.
Reduce wall stiffness.

Increase conductivity ( if liquid has higher k than solid).
Provide protection.

Transport afraction of surface heat load (?).




ISSUES AND ANALYSES

WALL PROPERTIES:
-- Effective elastic moduli, conductivity
-- Strength, failure mechanisms, design criteria

VOLUMETRIC HEAT GENERATION
-- Nuclear heat
-- Bremsstrahlung deposition

HEAT TRANSFER/FLUID FLOW
-- Film convection + convection in wall
-- Temperature profile
-- Liquid permeation and film creation

STRESS ANALYSISMECHANICAL DESIGN
-- Thermal stresses
-- Primary stresses
-- Stress <=> Materials Limits

POWER HANDLING CAPABILITY




WALL PROPERTIES

* Theoretical technigues (Effective medium theory)
» Experimental Results (Data......)

MECHANICAL.:
We wish to determine the relationship:

0 =<0>=CZE& or E=<Eg>=SO0

0 . mean stress € meanstrain
c : effective stiffness tensor s effective compliance tensor

For isotropic materials, c_and s are described in terms of two engineering
constants E and v.

THERMAL.:
We wish to determine the relationship:

q=<q>=-KOIOT =-KXOT >
q. heat flux OT : macro. temp. gradient K :effective cond.




WALL PROPERTIES

FLUID PERMEATION:
We wish to determine the relationship:

1 N

1
=<u>=-=k[Mp=-=KkXx0O
u=x<u> M P M p >
u . permeation speed 1. Viscosity
k : permeability tensor Op : pressure gradient
MEAN FIELDS:
Y= Ql [oW(r)dQ; Qe volume of a representative volume element
RVE

e Y(r) : any scalar, vector or tensor field quantity.

* An effective property appears in the constitutive laws relating mean field
variables.




WALL PROPERTIES
METHODS OF ANALYSS:

» Dilute distributions (DD) of inhomogeneities:
-- small volume fractions.

Differential schemes (DS):
-- applies to arbitrary volume fractions; numerically extensive.

Self-consistent methods(SC):
-- small volume fractions; involves n-point correlation integrals.

Bounds:. upper and lower:
-- arbitrary volume fractions; relatively ssmpler.

Simple Scaling laws

Computer ssimulations.

IN ALL CASES, Microstructural (geometrical) features go into the analysis.




WALL PROPERTIES
EXAMPLE 2-D RESULTS:

Dilute Pore Distribution:
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Salf-Consistent M ethod:
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WALL PROPERTIES
EXAMPLE 2-D RESULTS:

Differential Scheme:

{1+(K§1)[1—(1—f)‘3]}_1
(K

:1){1+—(K§1)[1—(1—f)‘3]}_1(1—f)‘3—%

AR ==

Here we report results for V-Cr-Ti, Ferritic steel and SIC (bulk and composite)
mechanical properties using the differential scheme.




ELASTIC CONSTANTS OF V-Cr-Ti FOAM
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ELASTIC CONSTANTS OF FERRITIC STEEL FOAM
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ELASTIC CONSTANTS OF SiIC FOAM
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COMPOSITE

E for solid is based on fiber volume fraction of 40%.

If these calculations are to apply to SiC-SiC composites, then we are
assuming that the solid in the foam still has the composition (40%fiber-
60%matrix).



WALL PROPERTIES

EFFECTIVE CONDUCTIVITY:

VARIATIONAL BOUNDS:

k- =k, + E

1 f

1
K, -k, 3Kk,
« for k,>k;

e Kk =Ky o =35 w/mK

and

k, =k, =50 w/mK




THERMAL CONDUCTIVITY (w/mK)

VARIATIONAL UPPER AND LOWER BOUNDS FOR
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NEAR-FUTURE WORK

e Calculation of mechanical behavior of foams past elastic
limit.

e Determination of stress limits of foams based on (available)
experimental data and models.

» Radiation and nuclear heat deposition.
 Thermomechanical/Fluid flow models and calculations.

« Calculation of NWL limits for the present concept.




