Fusion Engineering Development Scenarios - First Cut D. Berwald M. Abdou Finesse Project Meeting, July 12, 1984 #### **MOTIVATION** - The FINESSE program has several goals: - identify the nuclear testing issues which must be resolved in the development of components for commercial-scale fusion reactors. - assess the fusion, nuclear, and non-nuclear facilities which might be used to address these issues. - learn from the development experiences of similar technologies (fission, gerospace). - develop an informed opinion regarding the interactions between risk, schedule, and cost in progressing towards an engineering development phase for fusion. - The scenario development task will be used to address the last of the above goals by providing a framework to integrate ongoing FINESSE activities: - issues/failure modes. - test module designs/engineering scaling activities. - test facilities assessment. - test matrix development. - component reliability growth studies. ### STATUS/PLANS - Initial phase of activity started July 5. - Presentation to FINESSE advisory committee at Jackson Hole meeting in August. Rationale for narrowing down to a limited number of scenarios (hopefully, four major scenarios). - Further development for presentation at October workshop. - Final scenarios developed during FY'85 study will include full logical development. ### **SCOPE** - Pathways to focus upon key fusion facilities required to develop a given fusion reactor concept through a "demonstration reactor capability." - Both high and low fluence Nuclear Test Facility options will be considered as applicable. - Tokamaks and Tandem Mirrors will be considered as <u>both</u> the test facilities and the concept to be developed. - Scenarios with and without an "FMIT-like" capability will be considered. - Estimates of the required numbers of tests, test durations, and operational availabilities will, ultimately, be included. - Rough cost estimates for facilities and their operating costs will be developed. - International scenarios will be a subset of U.S. scenarios the expensive ones. ### DESCRIPTIONS OF FUSION DEVELOPMENT PATHWAY ELEMENTS | · | Ignition/Physics | Nuclear Test Facility (NTF) | Engineering Test Reactor (ETR) | Engineering Demonstration
Reactor (DEMO) | |---------------------------|--|---|--|---| | Mission | Develop under-
standing of
burning plasma
operation and
optimization | Test and develop
nuclear components | Test and develop all reactor relevant components | Provide an engineering demonstration of the received by stem operation technology at reason-able availability | | Description | Configuration relevant to resolve long pulse plasma physics issues | Configuration rele-
vant to nuclear com-
ponent testing.
Capability for
several test articles | Fully integrated envi-
ronment suitable for
testing majority of
interactive effects | Nearly all systems prototypical, but smaller than full scale commercial | | Minimum Flu-
ence Goal | Negligible | Hundreds of hours program | ≥ 3 MW-yr/m² | >5-6 MW-yr/m ² | | Availability
Goal | -Negligible-
Loω | Tens of runs per year, days each run | Ultimately ~ 30% | Ultimately ∿ 50% | | Risk/
Schedule | Risk can be high.
Should be first
facility in path | Risk as a neutron provider must be low. Test article risk can be higher | Only test articles
can be high risk | Only high fluence tests (>5-6 MW-yr/m ²) can be risky | | Facility
Examples | TFCX, LITE,
MFTF-a | MFTF-a + T, TDF, FED-R | INTOR, FPD, NET, FER | STARFIRE DEMO | #### OTHER BEASTS IN THE FOREST - <u>ETR/DEMO</u> an advanced ETR with prototypical components that is operated in two stages. - high fluence test phase - demonstration phase (possibly upgrade) - NTF/ETR fully integrated environment excepting the physics operating mode. ## **Previous Examples** # Baseline Tandem Mirror Development Pathway (MFTF- α + T — FPD-II) # Alternate Tandem Mirror Development Pathway D (MFTF- α + TDF-SP—FPD-II) ### **Development Pathway Comparison** | | | BASELINE | Α | В | С | D | |-------------------|----------------------------|---|---|---|--|---| | DESCRIPTION | | α + T → FPD·II | B + T → FPD·I | α → FPD-II | MFTF-B → FPD-I | α + TDF-SP \rightarrow FPD-11 | | RISK | PHYSICS RISK | MODERATE — α, BUT
NO MFCD PRIOR TO
DEMO | MODERATE - NO
α, BUT MFCD | MODERATE —
SAME AS
BASELINE | MODERATE - NO
α, BUT MFCD | MODERATE –
SAME AS
BASELINE | | | NUCLEAR
RISK | MODERATE — NO HIGH
FLUENCE TEST PRIOR
TO DEMO | MODERATE –
SAME AS
BASELINE | HIGH - NO
NUCLEAR TEST
PRIOR TO DEMO | HIGH - NO
NUCLEAR TEST
PRIOR TO DEMO | LOW - HIGH
FLUENCE TEST
PRIOR TO DEMO | | | INTEGRATION
RISK | LOW - REACTOR
RELEVANT PHYSICS
AND NUCLEAR
EARLY IN PROGRAM | MODERATE - NO
REACTOR
RELEVANT
PHYSICS UNTIL
ETR/DEMO | HIGH – VERY
LARGE STEPS | HIGH VERY
LARGE STEPS | LOW — BETTER
THAN BASELINE | | | FLEXIBILITY | HIGH – REASONABLE
SLIPPAGE FOR α+T
AND FPD-II NUCLEAR
FAILURES | MODERATE
GOOD NUCLEAR
FLEXIBILITY | LOW — ESPECIAL-
LY AFTER ETR/
DEMO N2 PHASE | LOW — SAME AS
FOR ALTERNATE
B | MODERATE —
LIMITED DUE TO
FLUENCE
REQUIRED | | FUNDS
REQUIRED | NEAR TERM | MODERATE — α+ T IN ·
1987, FPD-II IN 1997 | HIGH B + T IN
1987, FPD-I IN 1990 | LOW – α IN 1990,
FPD-II IN 1999 | MODERATE
FPD-I IN 1990 | HIGH — TDF-SP
IN 1998, α IN 1990 | | | LONG TERM | LOW - SHORT DEV.
PATH, NO UPGRADES
ETR/DEMO LEVEL | MODERATE —
SHORT DE L PATH,
BUT ETR/DEMO | MODERATE —
EFFICIENT, BUT
LONG DEWPATH | HIGH — LONG
PATH AND ETR/
DEMO UPGRADE | MODERATE –
SAME AS
ALTERNATE B | | SCHEDULE | DEMO
OPERATION
DATE | 2007 — HIGH FLUENCE
NUCLEAR DEMONSTRA-
TION BEGINS | 2005 | 2016 | 2013 | 2016 | | | PROTO
OPERATION
DATE | 2020 | 2017 — EARLIEST | 2029 | 2026 | 2028 | Manpower Resources Utilization ### POSSIBLE TOKAMAK DEVELOPMENT SCENARIOS (Tokamak) ### POSSIBLE TANDEM MIRROR DEVELOPMENT SCENARIOS MFTF/B $$\longrightarrow$$ ETR \longrightarrow DEMO MFTF/B \longrightarrow MFTF - α + T \longrightarrow ETR/DEMO MFTF/B \longrightarrow MFTF - α DEMO NTF \longrightarrow DEMO ### SUMMARY - Several scenarios have been proposed and will be compared at the August meeting. - It is expected that the overall number of permutations will be reduced. - Many factors will be considered in generating the overall logic/timing.