UCLA Effort on FNT

- * Effort is focused on the most critical issues
- * This effort is required under practically any strategy
 - Modelling of most important phenomena
 - Predictive Capability
 - Small experiments to verify basic concepts and most important phenomena
 - Prerequisite to establishing feasibility, and understanding how to go about demonstrating economic, safety and environmental potential of fusion
 - Effort is of direct, critical relevance to fusion and to ITER

Primary Areas of Emphasis

1. Neutronics and Shielding

Experiments, Instrumentation and Analysis

For any Blanket Breeding or Non-Breeding:

- Radioactivity
- Nuclear Heating
- Streaming/Shielding from Large Ducts
- Tritium Breeding/Line Source
- 2. Tritium Modelling
 - PFC
 - Beryllium
 - Single Crystal Li₂O
 - Analysis of BEATRIX
 - Analysis/Collaboration with CEA France
- 3. Thermal Control and Thermomechanics
 - Analysis
 - Small Experiments
- 4. In-Pile Experiments
 - Design and Analysis
- 5. Out-of-Pile Experiments
 - Define Requirements
 - Develop Test Plan for Testing Scaling, Sequence
- 6. Liquid Metal Free Surface (Divertor)
- 7. DEMO Blanket Concepts and How to Get There

Neutronics and Shielding

- A. Remarkable (Historic) Achievements During the Past 2 Years (Critical for any Breeding or Non-Breeding Blanket and Shield)
 - 1. Use of Point Source as Line Source
 - 2. Measurements of Integral Radioactivity and Decay Heat
 - First Time in History
 - Results Show Clearly that Serious Experimental/Analysis Effort: 1) <u>Saves</u> money, and 2) Necessary for Fusion to Establish Credibility
 - 3. Integral Measurements of Nuclear Heating
 - First Time in History
 - Results Show More Serious Experiment/Analysis Effort is Needed
- B. Conclusions from Tritium Breeding Experiments
- C. Planning of Shielding Experiments

Fig. 7-3 Specific photon yield (photons/cc) in tungsten zone as a function of after shutdown time by using 3 different data libraries in RACC