OVERVIEW OF TRITIUM BREEDING PROBLEMS AND EFFORTS

Mohamed A. Abdou UCLA

Presented at the
6th Topical Meeting on the Technology of Fusion Energy
San Francisco
March 3-7, 1985

REQUIRED TBR

$$\Lambda_r = 1 + G_o + \Delta_G$$

 G_0 = doubling time margin for a reference conceptual design

 Δ_G = uncertainty associated with G

Model

- \bullet Model was formulated and used to evaluate dependence of $\Lambda_{\mbox{\scriptsize r}}$ on reactor parameters.
- Methods for estimating Δ_G are under development. Initial results are available.

TRITIUM BREEDING PROBLEM

- A part of DT fuel self-sufficiency issue
- Self-sufficiency condition:

 Λ_r = Required tritium breeding ratio

 Λ_a = Achievable breeding ratio

 $\Lambda_r > \Lambda_a$

Key question:

Magnitude of uncertainties in Λ_r , Λ_a

- Conventional types of uncertainties
- Unconventional type

Schematic model of the fuel cycle for a DT fusion reactor used in the present work

- Λ = tritium breeding ratio
- \dot{N}^- = tritium burn rate in the plasma
- I_i = tritium inventory in compartment i
- T_i = tritium mean residence time in compartment i
- ε_i = nonradioactive loss of tritium in compartment i
- λ = tritium decay constant
- β = tritium fractional burnup in the plasma
- f; = tritium fractional leakage in compartment i
- I_9 = constant flow rate of tritium recovered from waste, steam, and air processing units

TRITIUM INVENTORY VARIATION WITH TIME FOR THE BASE CASE PARAMETER VALUES USING β = 0.05 and t_d = 5 YR

Dependence of Required TBR on Plasma, Engineering Parameters

Reference Case (X_{ref})

$$eta = 5\%$$
 $t_d = 5y$ $T_1 = 10d$ $T_6 = 1d$ $\epsilon_6 = 0.1\%$

REQUIRED TBR IS FOUND TO BE STRONGLY DEPENDENT ON SIX KEY PARAMETERS

- β = tritium fractional burnup in plasma
- t_d = doubling time
- T_1 = tritium mean residence time in blanket...
- T₆ = tritium mean residence time in plasma exhaust processing
- t_r = number of days of tritium reserve
- ϵ_6 = tritium extraction inefficiency in plasma exhaust processing

Log-Normal Probability Distributions Used as Weighting Functions, Superimposed on the Variation of the Breeding Ratio with Doubling Time.

REQUIRED BREEDING RATIO UNCERTAINTY (95% CONFIDENCE LEVEL)

Parameter	×g	σg	^Λ ex,i	Δ _{Gi} (%)
Doubling time	5 yr	2	1.120	4
Burn fraction	.05	2.5	1.18	9.6
Days of T reserve	2 d	2	1.108	3
Plasma recovery loss fraction	0.001	5	1.153	7
Plasma recovery time	1 d	2	1.092	1.4
Blanket inventory	5 kg	3	1.097	2

ACHIEVABLE TBR

- ullet Problem We cannot predict precisely $\Lambda_{f a}$ because:
 - We do not know the exact specifications of what to build
 - For given reactor specifications, we cannot predict precisely the performance
- We can only calculate a TBR for a reference system with assumptions about its specifications

$$\Lambda_a = \Lambda_c - \sqrt{\Delta_s^2 + \Delta_p^2}$$

- Λ_c = TBR calculated (the best we know how today, 3D, etc.) for a specified blanket in a specified reactor
- Δ_S = Uncertainty associated with <u>system</u>
 <u>definition</u> [changes in calculated TBR
 resulting from changes in the
 reference reactor system (e.g.,
 reference reactor system has limiter
 and reactor to be built could have a
 divertor)]
- Δ_p = Uncertainties in <u>predicting</u> TBR for a given system

$$\Delta_{\rm p} = \sqrt{\Delta_{\rm m}^2 + \Delta_{\rm d}^2 + \Delta_{\rm c}^2}$$

- Δ_{m} = Uncertainties associated with geometric <u>modeling</u>
- Δ_d = Uncertainties associated with nuclear <u>data</u>
- Δ_{c} = Uncertainties associated with calculational methods

TYPES OF UNCERTAINTIES IN PREDICTING ACHIEVABLE TBR

Uncertainties Associated with System Definition (Δ_{ς})

- First Wall/Blanket Definition
 - Configuration details, structure, coolant,
 manifolds, form and porosity of solid breeders,
 thermophysical property variations, etc.

Reactor Definition

- Technology choices (type of rf vs. neutral beams, limiter vs. divertor, etc.)
- Requirements and specifications for specific technology choices (e.g., size and configuration of penetrations for limiter, material choices for limiter)
- Presence of yet undefined components (e.g., penetrations for diagnostics and fueling, I&C)
- Possible need for components to satisfy yet undefined requirements (e.g., passive copper coils in the blanket for plasma stabilization, sector to sector electrical joints, etc.)

Δ_p = UNCERTAINTIES ASSOCIATED WITH PREDICTING TBR FOR A GIVEN SYSTEM

- Approximations in Geometrical Modeling (Δ_m)
 - Approximating engineering 3D surfaces and volumes by traditional mathematically convenient shapes (intersection of cones, cylinders, spheres, cubes, etc.)
 - Approximating discrete by continuous geometric zones
 - Approximating the details of heterogenity
- Nuclear Data (Δ_d)
 - Uncertainties in basic nuclear data
 - Approximations in data processing
 - Approximations in final data libraries (number of energy groups, weighting functions, etc.)
- Calculational Methods (Δ_c)
 - Inherent in methods and codes
 - Introduced by analyst (e.g., order of S_n, P_n, etc.)

Vertical Cross Section of Reference Tokamak Reactor

UNCERTAINTIES IN ACHIEVABLE BREEDING RATIO DUE TO UNCERTAINTIES IN SYSTEM DEFINITION

Change in TBR (%)
14
6
2
4
7
1
1
3
2

$\boldsymbol{\Delta}_d$, estimate of uncertainty in the due to uncertainties in nuclear data

Blanket Concept	Δ _d (%)
Li/Li/HT9	5.5
LiPb/LiPb/V	4.4
Li/Li/V	6
Li ₂ 0/He/HT9	4.9
LiA10 ₂ /H ₂ 0/HT9/Be	2.1

ACHIEVABLE AND REQUIRED TRITIUM BREEDING RATIOS AND UNCERTAINTIES FOR LEADING BLANKETS IN TOKAMAKS

	Achievable Λ_a Required Λ_r		Λr		
Concept	Δ _c	Δ _a	1 + G _o	Δg	$\varepsilon = \Lambda_a - \Lambda_r$
LiA10 ₂ /DS/HT9/Be	1.24	0.22	1.077	0.143	-0.20
LiPb/LiPb/V	1.30	0.24	1.072	0.142	-0.15
Li/Li/V	1.28	0.24	1.072	0.142	-0.17
Li ₂ 0/He/HT9	1.11	0.21	1.077	0.143	-1.32
LiAlO ₂ /He/HT9/Be	1.04	0.19	1.077	0.143	-0.37
Li/He/HT9	1.16	0.22	1.072	0.142	-0.27
LiA10 ₂ /H ₂ 0/HT9/Be	1.16	0.21	1.077	0.143	-0.27

Attaining DT Fuel Self Sufficiency Requires Success in Both Physics and Engineering

Tritium Fractional Burnup in plasma, %

PRESENT EFFORT ON TRITIUM BREEDING

Efforts to Reduce Uncertainties in:

Required TBR

Achievable TBR

Efforts to Improve <u>Predictability of Uncertainties</u>

REDUCING UNCERTAINTIES IN REQUIRED TBR

- Models to predict required TBR as a function of reactor plasma and engineering parameters
- Identifying allowable range of parameter space to guide R&D
 - Plasma, plasma support systems
 - Blanket
 - Tritium processing system
 - Other components
 - Early stage of fusion commercialization (short doubling time)

REDUCING UNCERTAINTIES IN ACHIEVABLE TBR

- Design Definition
 - Narrow materials and design concepts
 - Greater engineering detail
- Calculations
 - Modest improvement in methods
 - More detailed geometrical modeling
- Nuclear Data
 - Measurements
 - Evaluation
 - Data representation and processing

IMPROVING PREDICTABILITY OF UNCERTAINTY IN TBR

- Uncertainty in <u>Required</u> TBR
 - Probability distributions for reactor parameters
 - Methods to evaluate $\Delta_{f g}$
- Uncertainty in <u>Achievable</u> TBR
 - Integral experiments with point neutron source
 - Sensitivity analysis
 Improve methods
 Perform sensitivity studies
 - Benchmark calculations
 - Identifying requirements for integral experiments in fusion testing devices

PRESENT INTEGRAL NEUTRONICS EXPERIMENTS RELATED TO TRITIUM BREEDING (contd.)

- LOTUS: Switzerland
 - Led by IGA, EPFL, EIR in Switzerland
 - Cooperation with US, India
 - Emphasis on fissile material and tritium production in hybrid modules
- LBM: Supported by EPRI
 - PPPL, GA
 - Li₂0 module for insertion in TFTR
 - Delays in using tritium in TFTR
 - Other uses being explored

Others

- OKTAVIAN: Osaka University

 Focus on clean, single material sphere
- Special Experiments
 e.g., Pulsed Beryllium Sphere, LLNL