Overview of ITER Test Program

ITER Team

Presented by Mohamed A. Abdou

Presented at the 9th Topical Meeting on the Technology of Fusion Energy
Oak Brook, Illinois
October 7-11, 1990

OBJECTIVES OF ITER TEST PROGRAM

- Screening of concepts that require integrated fusion environment
- Calibration of fusion tests to results from non-fusion facilities
- Validation of blanket concepts for DEMO
- Testing of advanced concepts e.g.:

Low activation Inherent safety

Powerful, albeit limited, demonstration of fusion potential

FNT TESTING REQUIREMENTS

- Major Parameters of Device
 - Device Cost Drivers
 - Major Impact on Test Usefulness
- Engineering Design of Device e.g.,
 - Access to Place, Remove Test Elements
 - Provision for Ancillary Equipment
 - Accommodation of Failures in Test Elements

FLUENCE GOALS

Device fluence (at first wall) is a factor of 2 larger than fluence received at the test module

Device Fluence (MW·y/m²)

$$I_d = P_{nw} \cdot A \cdot t_d$$

Fluence at the Test Module (MW·y/m²)

$$I_m = P_{nw} \cdot A \cdot t_m \cdot T$$

Why $I_d > I_m$ (typical: factor of 2)

- $t_d > t_m$
 - Sequential tests required for scoping → verification
 - Also, failure and replacement of test modules
- T < 1
 - Attenuation through PfC, first wall

Examples of Key FNT Issues Requiring Substantial Fluence

- Mechanical Interactions
 e.g., Solid Breeder/Clad Interactions
- Tritium Inventory in Solid Breeders
- Burnup Effects on Chemistry, Compatibility and Breeding
- Corrosion/Redeposition
- Failure Modes, Rates

A2: Fluence-Related Effects in Solid Breeders and Insulators

Fig. 2.6.1 Test Port Allocation to Helium- and Water-Cooled Solid Breeder Blankets

ANCILLARY EQUIPMENT FOR TEST MODULES

- e.g. Heat rejection system
 - Tritium recovery systems
 - Coolant and purge fluid storage
 - Hot cells and PIE
- Extensive requirements on ITER configuration and maintenance