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ANALYSIS OF LIQUID METAL MHD FLOW USING AN ITERATIVE METHOD
TO SOLVE THE CORE FLOW EQUATIONS
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A computationally efficient and fast method for characterizing MHD fluid flow based on the “core flow™ approximation is
presented. The results of analysis of a number of practical problems that were solved using this method are also discussed.

At very high Hartmann number and interaction parameter and at very small magnetic Reynolds number, the equations
describing the flow are essentially linear and are therefore solved more easily. By solving these equations, the three-dimen-
sional characteristics of the flow can be examined using a two-dimensional computer code. The method used to solve these
equations is an iterative one. A velocity profile is assumed and the equations are solved in a plane in the fluid, The equations
are then solved in the domain of the duct wall. The potential in the wall is compared to the potential in the fluid along the
magnetic field lines. If the variation of the potential along field lines is not correct, the velocities are adjusted. The potential
distribution in the fluid can then be calculated again. This procedure is repeated until the variation of the potential along field
lines is correct.

This method is applied to flow in a conducting duct with a transverse magnetic field that varies in the flow direction. The
pressure drop dependence on various factors is discussed. The method appears to be particularly suited to problems with

complex geometries, because the equations may not be as complicated as in the direct integration method. The results of the
analysis are shown to compare well with experimental results.

1. Introduction

The self-cooled liquid metal blanket is a prime
candidate for use in a fusion reactor. While lithium
containing liquid metals have good heat transfer and
tritium breeding characteristics, their flow is affected by
the presence of a magnetic field. These magnetohydro-
dynamic (MHD) effects have an impact on heat trans-
fer, mass transfer, and the pressure drop.

The set of equations describing MHD flow consists
of the Navier-Stokes equation, Maxwell’s equations,
Ohm’s law, and the mass conservation equation. The
Navier-Stokes equation is nonlinear, and certain terms
in it can be many orders of magnitude larger than other
terms. For these reasons, the MHD equations are very
difficult to solve analytically or numerically.

Straight conducting circular ducts with transverse
magnetic fields that vary in the flow direction have been
analyzed analytically using asymptotic methods [1}.
While these methods are very good for predicting trends,
in general, applicabilily to the fusion blanket is limited.

A numerical solution of the full set of equations
would give the most accurate solution for any situation,

But, as mentioned above, this is particularly difficult to
do, especially at the high magnetic fields characteristic
of a fusion reactor. There are cases, however, when
certain terms can be neglected in the Navier—Stokes
equation and Ampére’s law, making the MHD equa-
tions linear and eliminating the difficulties associated
with their numerical solution. When the magnetic field
is high enough, viscous and inertial terms can often be
neglected without a significant impact on the calcula-
tion of the core flow variables. In addition, if the
induced magnetic field is negligible with respect to the
applied magnetic field, the magnetic field can be as-
sumed known. After making the simplifications implied
by these assumptions, the set of MHD equations can be
solved numerically without the problems inherent in the
solution of the full set of equations.

Two methods of solving these equations have been
explored. One is a “direct integration” method where
the equations are integrated along magnetic field lines
[2,3]. The resulting equations are then solved subject to
the correct boundary conditions. While this method is
applicable, in principle, to any problem, the equations
become quite unwieldy in certain complex geometries.
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An alternative method has been developed which avoids
these complications. It is an iterative method — the full
set of equations is not solved simultaneously. A velocity
profile is assumed and the equations are solved in a
plane in the fluid. The equations are then solved in the
domain of the duct wall. The potentials in the wall and
fluid are compared along magnetic field lines, and if
they do not vary in a specified way, the velocity is
modified. This process is repeated until the correct
solution is found. Because the full set of equations is
not integrated and combined, the equations being solved
may not be as complex as those derived in the direct
integration method. For this reason, the iterative method

should be easier to apply to problems with complicated
geometries.

2, Background information

The equations describing steady-state, incom-
pressible MHD flow are

prevo=—~vp+jiX B+ uviy, 1)
ji=o(-vé+vXB), {2)
v-B=0, (3)
V XB=p,j, (4)
v v=0, (5)

where p is the fluid density, o is velocity, p is pressure,
J is current density, B is the magnetic field, p is
viscosity, o is conductivity, and ¢ is potential. These
equations can be nondimensionalized by setting v* =
v/v, B*=B/B,, j*=j/a.vB,, ¢$* =$/avB,, and p*
=p/o.vB%a. In these relationships, the starred quanti-
ties are dimensionless, and v is the bulk velocity, B, is
the maximum magnetic field, and a is the duct half-
width,

The dimensionless MHD equations are (dropping
the stars)

N lpego=—vp+ixB+ M2y, (6)
J=—-Vo+oXB, {7
v+B=0, (®)
VXB=R_]J, (9)
v rv=10, (10)

where N is the interaction parameter, N = oB%a/pv, M
is the Hartmann number, M = Ba‘/o/,u, and R is the
magnetic Reynolds number, R_ = pgova. The interac-
tion parameter is the ratio of magnetic forces to inertial
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forces, the Hartmann number squared is the ratio of
magnetic forces to viscous forces, and the magnetic
Reynolds number is the ratio of the induced magnetic
field to the applied magnetic field.

In order to make the solution of these equations
easier, certain simplifications can be made. Inertial and
viscous forces are important in the boundary and shear
layers, while in the core flow they are generally negligi-
ble (see, for example, [4]). If the following assumptions
are made:

(1) viscous forces are negligible (M — o),

(2) inertial forces are negligible (N -+ o0),

(3) the induced magnetic field is negligible (R, — 0),
then the dimensionless equations governing steady, in-
ertialess, inviscid MHD flow are

Vp=jiXB, (11)
Jj= —Vo+oXB, (12)
v j=0, (13)
vV v=0. (14)

The flow is treated as if it is made up entirely of core
flow. Because the induced magnetic field is assumed
negligible, the magnetic field is known. The boundary
layers are assumed to have a negligible effect on the
core flow. This is usually a valid assumption as long as
there is a component of the magnetic field perpendicu-
lar to the duct wall. If the magnetic field is parallel to
the wall, the problem can still be treated, but special
treatment of the boundary layers at these points must
be made. In circular ducts with transverse magnetic
fields, this is violated only at a point, so all boundary
layers can be neglected,

3. Description of the iterative solution method

The iterative method alternatively solves a simplified
set of equations in the fluid and in the wall. The duct
and fluid are both mapped directly. When the equations
and boundary conditions are satisfied in both regions,
the problem is solved.

The equations are solved on a two-dimensional
surface. By taking the curl of the Navier—Stokes equa-
tion, the variation of the current density along magnetic
field lines can be determined. By taking the curl of
Ohm’s law, the variation of the velocity along magnetic
field lines is found. Therefore, once the solution is
known on a two-dimensional surface, the solution in the
entire domain can be calculated.
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In the domain of the fluid, the core flow equations
are given by egs. (11)-(14). After assuming a velocity
field, ¢ and j can be determined using eqs. (12) and
(13). Combining eqs. (12) and (13) yields

vip=v (vXB). (15)

By taking the curl of the Navier-Stokes equation, an
expression for the variation of the current density, and
thus the potential along field lines, is found. This ex-
pression is used in eq. (15) so that it can be solved in
terms of x and y.

The potential distribution in the wall is calculated
nexti. In the domain of the wall, Ohm’s law and current
conservation are used

ow
j=——ve, (16)
O

V'j=jf'ng (17)

where a is a unit normal pointing from the wall to the
fluid. Egs. (16) and (17) can be combined, resulting in
the following equation

a.
v2¢=—o_fj;-n, (18)

where j; is calculated from the potential distribution in
the fluid using Ohm’s law (eq. (12)).

Once the potential distribution in the fluid and wall
has been calculated, it is necessary to determine whether
the equations have been satisfied in the entire domain
of the problem. The criterion for determining this is
based on the variation of the potential along the field
lines. The component of Ohm’s law in the direction of

the magnetic field is integrated along a magnetic field
line

1y a_d’_ _ R i .
A d/ 3l P = f{} di jy. (19)

Integration of this equation results in an expression for
the variation of the potential along the magnetic field
lines. -

The potentials in the fluid and wall are compared
along field lines. If the potentials do not meet this
criterion to within a specified error, it is necessary to
adjust the velocities. First, a new potential distribution
is calculated by taking a linear combination of the old
fluid potential and what the fluid potential would be if
it varied correctly along field lines:

! ,
817 = ot + oo 0+ [ ). (20)
1

where p, + p;=1. This new potential distribution is
then used to calculate a new guess for the axial velocity
by using Ohm’s law.

The axial velocity calculated in the manner described
previously will not necessarily satisfy global mass con-
servation. The velocity must be normalized such that

f f da v, = constant, (21)

where a is the cross-sectional area of the duct,

The second compoenent of velocity perpendicular to
the magnetic field must also be calculated. An expres-
sion for this can be found by integrating eq. (14) along
a magnetic field line

[div-v=o. (22)

This results in an equation relating the required velocity
component to the axial velocity component,

Assume
Velocity
Profile

Calculate Potential
Distribution in Fluid

Calculate Potential
Distribution in Wall

Adjust
Valocity
Profile

Fig. 1. Overview of the iterative solution methed.
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B=B(x)x

Fig. 2. Coordinate system and solution plane in the fluid.

After calculating a new velocity distribution, the
potential in the fluid can be calculated again. This
process is repeated until the criterion based on the
potential variation along the field lines is satisfied. Fig.
1 gives a summary of the iterative procedure.

4. Application

The iterative solution method has been used to
analyze flow in a straight, circular conducting duct, in
the presence of a transverse magnetic field which can
vary in the flow direction.

4.1. Equations and boundary conditions
Fig. 2 shows the plane in the fluid on which eq. (15)

is solved, taking advantage of symmetry. In component
form, using the coordinate system shown in fig. 2, afier

B=B(x)z
Fig. 3. Solution surface in the wall,
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putting derivatives in terms of x and p only, this
equation is

19B3¢ 3% Oy do, 3B
8x2+B = x+6y2_ Bay+Bax+2vyax.
(23)

After assuming a velocity profile, €q. (23) can be solved
subject to the proper boundary conditions. At

boundaries a and ¢, fully developed conditions are
applied

¢
™ =0, (24)

At boundary b, due to symmetry

At boundary d, the thin-wall boundary condition is
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applied [5]
j'”=¢V\3¢v (26)

where v2 is the Laplacian in the wall only, and & is
the wall conductance ratio, ® =(o,t,)/(s,a). This
boundary condition enforces current conservation across
the fluid—wall interface.

The x and y components of the current density can
be calculated from Ohm’s law (eq. (12)) once the poten-
tial distribution has been calculated.

In component form, based on the coordinate system
shown in fig. 3, the equation for the potential distribu-
tion in the wall is

% % 1( . 13B
W+§—--6(—jfysm0 Bax],xzcosﬂ). @7

Eq. (27) can be solved subject to the correct boundary
conditions. Fig. 3 shows the surface on which eq. (27) is
solved, again taking advantage of symmetry. At
boundaries a and ¢, fully developed conditions are
applied

P
7 =0 (28)

At boundary b, due to symmetry

¢=0. (29)
At boundary d, due to symmetry

3

EY] =, (30)

4.2, Convergence criterion

The z component of Ohm’s law is integrated along a
field line in order to determine the correct variation of
the potential along field lines

22 Z3 dd
dzj, = — dz—=. 31
[ dai=— [ T 1)
Substituting the expression for j;, yields
1 4B .
dz-—— = --f B 30 ix% (32)

Carrying out the integration results in

$(22) = ¢(z) = ~ 198, ("z"%‘ - 212)

B affx (33)

If z, is evaluated at 2=0 and z, is evaluated at the
wall, then

18B . z2
%“E axffx_z—' (34)

If this criterion has not been met, the velocities must be
adjusted.

4.3. Updating velocities

A new velocity distribution is calculated using Ohm’s
law

Jpmew
unew=l(m 'g;; _J-;;!d),

(35)
where j2i is the most recently calculated value. In this
cquauon, $°" is the result of taking a linear combina-
tion of the old potential, ¢°"’ and a new wall potential,
o7, calculated using eq. (34)

P = ¢, + (Nd + ZBJrc::d ax’ )Pz- (36)

This velocity is normalized to satisfy global mass
conservation using eq. (21). The variation of v, along z
can be found by taking the curl of Ohm’s law and
integrating, so the integration with respect to z in eq.
(21) can be carried out to yield

_1 3By, ;3
fdy( 552 0x 3y )—constant, (37)

where v, = v, evaluated at z=0.

An expression for the y-component of the velocity is
found by using eq. (22)

f dz (38)
The third term can be integrated immediately

z. O,
j(; dz—a‘; - vzz“ — %0, (39)

where z,, is the value of z at the wall.

It is necessary that there be zero mass flux into the
wall. This implies
ZZw ¥y

v, =—u, tan§ : (40)

at the wall. Due to symmetry, v, = 0.
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Carrying out the integration yields

1 avxﬂ Z&, aB zajx
vy—zfdyzw(———+——~( )—-——

ox 6B’ x dy
z, . 3’B 2y 3B 3,
“2szx8x2 tan § — ~5? 3% 3x tan &
Zw . (8BY?
+ij(§) tan 0). (41)

5. Benchmarking and results

A computer code was written and benchmarked using
experimental results from ALEX (Argonne Liguid Metal
Experiment) for flow in a conducting circular duct [6).
In particular, comparison of potentials, velocities, pres-
sure gradients, and pressure differences were made in
the region where the fluid exits the magnetic field. Only
two of these comparisons are shown for space limitation
reasons. All variables are presented in dimensionless
form. The magnetic field variation at the exit of the
field is shown in fig. 4. Figs. 5 and 6 show comparisons
of the pressure gradients at y=1 and the velocity
profiles near x =0, respectively. The pressure gradient
was measured at M = 10525 and N = 6541. The veloc-
ity profile was measured at M =10000 and N = 6400.
There is a slightly larger bump in the pressure gradient
near x = 0 in the code prediction than in the experimen-
tal data. This is because the pressure gradient in the
experiment was measured over a 6-in. interval. This will
smooth out the pressure gradient somewhat. Fig. 6
clearly shows the M-shaped velocity profile characteris-
tic of flow in a nonuniform field. As can be seen, there

15 T T
16 B
-]
s -1
0.0 1 L
=10 -5 o 5 10
X

Fig. 4. Magnetic field variation at the exit of ALEX.
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Fig. 5. Comparison of code prediction of the pressure gradient
with experimental data from ALEX,

is good agreement between the code results and the
experimental results,

The code was used to analyze ducts with various wall
conductivities and field variations in order to investi-
gate their effect on the pressure gradient due to the
varying field. This pressure drop occurs as a result of
the longitudinal currents generated by a longitudinal
potential gradient. This potential gradient is due to the
variation of the quantity v X B (in this problem, B is
varying). A similar result would cccur due to a variation
in cross-section, this time due to a change in v. The
pressure drop due to the variation in the magnetic field
can be calculated in the following manner. The com-
puter code is used to calculate the total pressure drop,

Vx

L0 -0.5 0.0 05 10

R/a

Fig, 6. Comparison of code prediction of the velocity profile
near x = 0 with experimental data from ALEX,
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and the fully-developed flow pressure drop is then
subtracted

@ X
A P fie1d variation = A Peode — 1+o L dxB?. (42)

Fig. 7 shows how the value of the pressure drop for
¢ =0.03 and @ =0.30 varies as a function of B,. In
these calculations, the field was assumed to vary lin-
early from B=1.0 to B= B, over a distance of 5.25
duct radii. The pressure drop is greatest for the largest
change in B. This is expected, since the larger the
change in B, the greater the longitudinal potential
gradient which implies larger currents, and hence a
greater pressure drop. Although the magnitude of the
‘pressure drop is less for @ =0.03 than & =0.30, the
pressure drop with the lower value of @ is greater
relative to the straight duct pressure drop. The pressure
drop due to the varying field becomes more significant
as @ decreases.

Fig. 8 shows the effect the distance over which the
field changes has on the pressure drop due to the
varying field. Results are shown for ducts with @ = 0.03
and @ = 0.30, with the field varying linearly from 1.0 to
0.5 over distances from 0.5a to 10a. The greatest pres-
sure drop occurs for the more quickly varying field for
the same reasons as given in the previous paragraph,
Again, the varying field pressure drop relative to the

B=1Q
B=B,
—-——b.250 ——=

0.07 T . Y .

005 -
By
< ® = 0.30

002 |- 1

© = 0.03
0-00 1 1 1 L

0.00 020 0.40 060 D80 1.00

B
Fig. 7. Pressure drop due to varying field as a function of B,.
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Fig. 8. Pressure drop due to varying field as a function of
distance over which the field varies.

fully developed flow pressure drop is greater for the
duct with the lower wall conductance ratio.

6. Conclusions

The core flow approximation is a powerful tool for
analyzing MHD flow at high M and N. It gives an
accurate prediction of the MHD fluid flow. The itera-
tive method has been used to analyze a problem with
simple geometry. In order to determine the potential of
this method, it is necessary to use it to evaluate a more
complicted geometry such as a multiple duct problem.
In addition, determination of the ranges over which the

core flow approximation method is applicable should be
done.

Nomenclature

a duct half-width,

B magnetic field,

i electric current density,
n unit normal,

p pressure,

ty wall thickness,

v velocity,
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X, ¥,z cartesian coordinates,

[/ angle measured with respect to positive z
axis,

viscosity,

fluid density,

electric conductivity,

electric potential,

wall conductance ratio.
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