INTERIM REPORT ON TPA FUSION TECHNOLOGY MOHAMED A. ABDOU PRESENTATION TO TPA INDUSTRIAL ADVISORY COMMITTEE LA JOLLA, CA 13 MARCH 1986 3. PLASMA TECHNOLOGY 7.3 3.1 MAGNETS 3.2 HEATING AND CURRENT DRIVE 3.2.2 ION CYCLOTRON HEATING 3.2.3 LOWER HYBRID HEATING 3.3 FUELING 3.4 REMOTE MAINTENANCE 3.5 PLASMA INTERACTIVE COMPONENTS 3.5.1 PARTICLE AND IMPURITY CONTROL 3.5.2 HEAT REMOVAL 3.5.3 TRANSIENT EVENTS 4.0 NUCLEAR TECHNOLOGY 4.1 BLANKET/FW 4.1.1 LIQUID BREEDER BLANKETS 4.1.2 SOLID BREEDER BLANKETS 4.1.3 HYBRID BLANKETS (LIQUID METAL) 4.1.3 HYBRID BLANKETS (MOLTEN SALTS) 4.2 SHIELD 4.3 TRITIUM -243 5.0 MATERIALS 5.1 STRUCTURAL MATERIALS 5.2.1 SOLID BREEDER MATERIALS 5.3 SPECIAL MATERIALS Table 1 | TOP LEVEL OBJECTIVES FOR MFPP KEY TECHNICAL ISSUES | | | | | | | |--|---|---|--|---|--|--| | 14FPP Key Issue | 1985 - 1990 | 1990-1995 | 1995-2000 | 2000-2005 | Overall Objective | | | • Confinement Systems | Identify potentially
attractive reactor
concepts and perform
experiments to address
selected technical
issues | Resolve technical iss
tive reactor concepts
capability | ues that support developme
and a predictive plasma s | of attrac- cience Operate leading confine- ment concept under fusion | Demonstrate one or more confinement concepts (or commercially competitive fusion applications) and develop predictive plasma science capability | | | • Burning Plasmas | Demonstrate scientific
breakeven (Q ~ 1 in one
concept) | Demonstrate
ignition in short
pulses in one
confinement concept | Demonstrate igni-
tion (or high Q)
with long pulses
in one confine-
ment concept | conditions | Demonstrate ignition for high Ql, long pulse burning plasma conditions in the leading confinement concept | | | • Nuclear Technology | Conduct scoping
nuclear technology
experiments | Acquire engineering
data from inter-
active effects
testing | Verify selected nuclear technology concepts in non-fusion facilities | Perform experiments of leading nuclear | Show that nuclear tech-
nology can be developed that
leads to commercially competi-
tive fusion applications | | | • Materials | Develop scoping data
on improved
materials | Acquire moderate
fluence data on
leading materials
in non-fusion
facilities | • Acquire high fluence data on leading materials in non-fusion facilities | technology concepts
and materials in
fusion environment | Show that improved materials can be developed that lead to enhanced economic and environmental features for commercially competitive fusion applications | | Table 3-1 # CHARACTERIZATION OF PLASMA TECHNOLOGY TASKS 1985-1990 1990-1995 1995-2000 2000-2005 Subsystems feasibility tests on existing devices, component development for ignition Testing on ignition device, evaluation of approaches to provide long burn design basis Component development for long burn facility Advanced development of systems based on quasi steady-state testing in fusion environment Table 4-1 | | 1985-1990 | 1990-1995 | 1995-2000 | 2000-2005 | |----------------------|--|---|---|--| | • Blanket/First Wall | Perform separate effect
tests and obtain scoping
data. | Perform multiple interaction
experiments to explore and
characterize phenomena. | Perform integrated tests in
non-fusion facilities for
concept verfication. | Operate blanket experimental modules in fusion test facility. | | • <u>Tritium</u> | Perform permeation and
plasma exhaust processing
experiments. Test cryo-
pump module. | Demonstrate plasma exhaust
processing technology. Test
tritium extraction techniques
on laboratory scale. | Demonstrate tritium extrac-
tion. Operate vacuum test
stand. | Operate tritium systems
in fusion test facility. | | Shield | Perform point source shield
tests. Obtain data on
component radiation protec-
tion criteria. | Design and test shields in
Verify shield effectiveness | tritium-burning devices. and predictive capability. | Yerify shield performance
in fusion test facility. | | <u>PIC</u> | Perform separate effect
tests. Develop predictive
capability for plasma edge
and recycling. | Demonstrate energy removal
techniques for PIC systems. | Design and test PIC systems
for long pulse device. Verify predictive capa-
bility. | Operate PIC systems in
fusion test facility. | #### EVALUATION POINTS AND MILESTONES FOR NUCLEAR TECHNOLOGY - E₁ Select leading material combinations for liquid breeders. - E₂ Select leading material combinations for solid breeders. - Compare results for solid and liquid breeders. Select one breeder if possible. Select leading configurations. - E₄ Select primary design for experimental blanket test modules in fusion test. - E₅ Select tritium extraction and control methods. - E₆ Select method for fuel clean-up. - E₇ Assess feasibility of non-water cooling of PIC. - E_R Assess heat removal techniques for PIC. - E_q Evaluate system impact on selection of blanket concepts. - ${\bf E}_{{\bf 1}{\bf 0}}$ Evaluate system impact on selection of blanket test modules. - M₁ Verify blanket concepts in non-fusion facilities. - M₂ Demonstrate tritium system operation. - M₃ Achieve moderate fluence (30 dpa) for candidate alloys in non-fusion facilities. - M₄ Achieve moderate fluence (30 dpa) for reference alloys and high fluence (100 dpa) for candidate alloys in non-fusion facilities. - M₅ Achieve high fluence (100 dpa) for reference alloys in non-fusion facilities. - M₆ Verify data and methods for shield design. - M₇ Verify shield design effectiveness. Obtain data on component radiation protection criteria. Table 4.1-1 | | BLANKET/FW OBJECTIVES | | | | | | | | | |----|--|---|--|---|--|-----------|--|---|---| | | | | 1985-1990 | | 1990-1995 | , , , , , | 1995-2000 | | 2000-2005 | | • | MHD (Including
Insulators) | • | Explore MHD phenomena in simple geometry tests | • | Explore MHD phenomena in complex geometry tests. Perform scoping experiments for macroscopic effects. | | | | ##
###
| | • | Material
Compatibility | • | Explore basic material interactions in loop tests. | • | Perform further loop test-
ing to determine design
limits and impurity control
techniques | | | | | | • | (Tritium Recovery and Permuation) | • | Explore tritium recovery techniques in small-scale experiments. Measure basic permeation properties and rates. Develop tritium design goals. | • | Verify tritium recovery techniques in small-scale experiments. Operate transport loops to demonstrate tritium control. | • | Perform non-fusion con-
cept verification testing
for selected liquid and/or
solid breeder material
combinations and concepts. | | | | • | Solid Breeder
Tritium/Thermal
Behavior | • | Measure basic properties of solid breeders. | • | Perform advanced in-situ trit-
ium recovery experiment on
selected material combinations. | | | • | Perform fusion testing for selected concepts. | | ,• | Neutronics | • | Perform simple geometry experiments. | • | Perform engineering mockup experiments. | | | | | | • | (Materials) | • | Generate moderate fluence
data for initial alloys in
fission reactors. Measure
basic properties. | • | Generate moderate fluence data for improved alloys in fission reactors. Develop fabrication and recycling techniques. | • | Generate high fluence data for improved alloys in fission reactors. | | | | | | | | | | | | | | #### BLANKET/FW EVALUATION POINTS AND MILESTONES - E₁ Narrow coolant/breeder and structural material options for liquid breeder blankets. - E₂ Narrow solid breeder/multiplier material options. - E₃ Assess tritium breeding potential of Li₂0. - E_{Δ} Select fuel form and fuel processing methods. - E₅ Select material combinations and configurations for non-fusion concept verification testing of liquid breeder blankets. - E₆ Select material combinations and configurations for non-fusion concept verification testing of solid breeder blankets. - E₇ Select material combinations and configurations for non-fusion concept verification testing of hybrid blankets. - Compare solid breeder and liquid breeder concepts. Select a small number of concepts from one or both categories. - $\mathbf{E}_{\mathbf{Q}}$ Select and design blanket modules for fusion testing. - M_1 Complete characterization of Li_20 ceramic breeders. - M₂ Complete characterization of ternary ceramic breeders. - M₃ Achieve moderate fluence for initial candidate alloys and select advanced reference alloys. - M₄ Complete MHD experiments. Establish feasibility of self-cooling and optimize cooling methods. Determine MHD design limits. - M₅ Complete basic material interaction experiments. Determine operating limits and demonstrate adequate impurity control techniques. - M_6 Demonstrate tritium extraction system for Li and/or LiPb. - M₇ Complete advanced in-situ tests. - M₈ Complete neutronics engineering mock-up tests. Demonstrate margin for achievable tritium breeding ratio. - $\mathbf{M}_{\mathbf{Q}}$ Achieve moderate fluence non-fusion irradiation for reference alloys - M_{10} Complete non-fusion concept verification for liquid breeder blankets. - \mathbf{M}_{11} Complete non-fusion concept verification for solid breeder blankets. - M_{12} Complete non-fusion concept verification for hybrid blankets. - M₁₃ Achieve high fluence non-fusion irradiation for reference alloys. Table 4.2-1 | SHIELD OBJECTIVES | | | | | | |---|--|---|--|-----------|--| | | 1985-1990 | 1990-1995 | 1995-2000 | 2000-2005 | | | • Radiation | Verify DT source specificati | on. | | · | | | Protection
Requirements | Specify radiation limits
for magnet insulations and
diagnostics. | Specify radiation limits for
S/C coils and vacuum pumps. | | | | | | diagnostics. | Estimate corrosion, transport
and deposition in piping and
heat exchangers. | | | | | • <u>Verification of</u> <u>Shield Effective-</u> | Perform bulk shield
benchmark experiments. | Perform bulk shield mockup experiments. | Perform bulk shield
prototype experiments. | | | | ness | Verify activation response. | Verify materials damage response. | | | | | • | Perform penetration
benchmark experiments. | Perform penetration mockup
experiments. | Perform penetration
prototype experiments. | | | | | Improve design methods:
activation, streaming, | Develop optimized shield
designs. | Develop fully integrated
shield designs. | | | | | and sensitivity. | | | | | Table 4.3-1 | | TRITIUM | | | | | |------------------------------------|---|--|---|---|--| | | 1985-1990 | 1990~1995 | 1995-2000 | 2000-2005 | | | Plasma Exhaust Processing | Operate TSTA integrated
loop for plasma exhaust
processing (including
safety systems). De-
velop alternative
cleanup techniques (e.g.
palladium, diffuser). | Demonstrate reliable opera-
tion of final processes for
plasma exhaust processing. | | Operate tritium systems
in fusion test facility. | | | • (Plasma Experiments) | Support TFTR tritium operations. | Support ignition experiment. | Support long burn exper-
iment. | | | | • <u>Vacuum</u> | Test cryopump module
with tritium at TSTA
valve. | Initiate development of
large (1-m dia.) vacuum. | Operate vacuum test
stand. | | | | Tritium Permeation and Control | Perform small experiments to measure
permeabilities of
fusion materials (incl.
use of tritium plasma). | Establish understanding of
permeation characteristics
of fusion materials. | | | | | Blanket Product Processing | Test blanket extraction
techniques. | Operate semi-scale blanket
tritium extraction loop
(LM and/or SB). | Add blanket extraction
interface to TSTA. | | | | MATERIALS (LEVEL | 1) | |------------------|----| |------------------|----| | MATERIALS (CEASE 1) | | | | | |--------------------------------------|--|---|---|---| | | 1985-1990 | 1990-1995 | 1995-2000 | 2000-2005 | | • Structural Materials | Develop baseline and low fluence scoping data on low activation FW/B materials. Improve radiation resistance through composition and thermomechanical treatment modifications Develop helium simulation techniques | Develop reference data and moderate fluence property data with simulated He effects on primary candidate alloys Provide data on conventional alloys at high damage levels (100 dpa) and high helium concentrations | Provide high fluence
(100 dpa) property
data on primary
candidate alloys with
improved compositions
and microstructures | • Evaluate effects of high fluence 14 MeV neutron irradiation on properties of selected FW/B reference alloys | | | Develop scoping data
on selected PIC
alloys | Develop selected PIC
alloys with improved
composition/micro-
structure | Provide high fluence
(up to 100 dpa)
property data on
primary candidate
alloys | Evaluate 14 MeV
radiation effects on
reference PIC alloys | | | | Design high fluence
14 MeV neutron
materials test facility | Construct high
fluence 14 MeV
neutron materials
test facility | Irradiation testing
in 14 MeV neutron
facility | | Non-Structural Blanket Materials | Develop baseline and
low fluence scoping
data on candidate
breeder materials | Provide moderate
fluence data on
selected breeder
materials | High fluence/burnup
data on prime candi-
date breeder materi-
als | | | | Develop insulator
materials with im
proved composition/
microstructure | Provide low fluence
scoping data on
improved ceramic
insulator materials | Provide high fluence
data on prime
candidate materials | Provide 14 MeV
radiation data on
selected reference
materials | | • Special Materials | | Provide baseline and
low fluence scoping
data on selected
materials | Define material
operating limits
based on fission
reactor irradiation
data | Evaluate 14 MeV
neutron radiaton
effects | | STRUCTURAL | MATERIALS | (LEVEL | 2) | |------------|-----------|--------|----| |------------|-----------|--------|----| | STRUCTURAL MATERIALS (LEVEL 2) | | | | | | |---|---|--|---|---|--| | | 1985-1990 | 1990-1995 | 1995-2000 | 2000-2005 | | | FIRST-WALL/BLANKET ALLOYS • Reduced Activition Ferritic Steels and Vanadium Alloys | Develop scoping base-
line data and fabri-
cation requirements
for selected low
activation alloys | Develop reference
baseline and fabri-
cation data on pri-
mary candidate alloys | | | | | Tanza am Arroys | Evaluate effects of
chemical and micro-
structural variations
on properties of
selected low acti-
vation alloys | Determine chemical
and thermomechanical
treatments (TMT) on
properties of primary
candidate alloys | | | | | | Determine effects of
low fission neutron
fluences on embrit-
tlement of selected
low activation alloys | Moderate fluence ra-
diation effects on
properties (including
simulated He effects) | High fluence fission
neutron data on im-
proved compositional
microstructures | High fluence (fis-
sion) mechanical pro-
perty data on
reference alloys | | | | Develop simulation
techniques for evalu-
ating helium effects | Provide helium and
damage correlations | Evaluate helium ef-
fects on primary can-
didate alloys | | | | | | Design high fluence
14 MeV materials test
facility | Construct high flu-
ence 14 MeV materials
test facility | Test selected reference alloys in 14 MeV
materials test
facility | | | • Conventional Alloys (HT-9, PCA) | Develop improved com-
position and micro-
structures of conven-
tional alloys | | | | | | • | Evaluate effects or
moderate fluence neu-
tron irradiations on
properties of conven-
tional alloys | Evaluate helium ef-
fects at high fluence
(100 dpa) on conven-
tional alloys | Assess performance to
100 DPA (with He),
refining alloy design
in iterative process | : | | | • Innovative Alloys | | Scoping baseline and
radiation effects
data on selected in-
novative materials | Moderate fluence data
on selected innova-
tive materials | | | | • Copper and Refractory Hetal Alloys | Develop scoping base-
line data on selected
copper and refractory
metal alloys | Develop baseline data
on selected refrac-
tory metal alloys | Moderate fluence data
with simulated helium
effects on improved
alloys | Test selected reference alloys in 14 MeY Materials Test Facility | | | | Low fluence scoping
data on copper and
refractory metal
alloys | Moderate fluence ra-
diation data on se-
lected copper alloys | Select primary candi-
date alloys for 14
HeV tests | | | # Table 5.1-2 FIRST WALL/BLANKET STRUCTURAL ALLOYS (LEVEL 3) # Reduced Activation Alloys (Ferritic Steels and Vanadium Alloys) # Baseline Properties - Determine effects of fabrication and weld procedures and thermomechanical treatment on baseline properties, particularly DBTT, including effects of post-weld heat treatment. - Determine baseline mechanical performance, viz., DBTT and creep properties. #### Thermochemical Performance Determine effects of chemical environment, particularly interstitial element interactions such as H, C, N, and O, and thermal aging effects on materials performance. #### Radiation Effects - Determine swelling characteristics on fission neutron irradiations (FBR/HFIR) of alloys as function of composition and TMT. - Determine low fluence (< 30 DPA), low temperature (< 400°C) fission neutron irradiation on embrittlement. Later evaluate high fluence irradiation hardening. - In the longer term, evaluate radiation creep characteristics. # Fundamental Radiation Studies - Develop helium simulation techniques and displacement damage correlations for fission reactor irradiations. - Evaluate potential for long lifetime by high fluence FBR and charged particle irradiations. # 14 MeV Test Facility Design and construct a high fluence 14 MeV neutron test facility for materials testing. # Conventional Alloys (HT-9, PCA) # Radiation Effects Use expanded radiation data base to develop better understanding of radiation effects on materials and for more rapid development of new low activation alloys. # Baseline/Chemical Effects Develop improved composition/microstructures as reference for developing improved low activation alloys. # NON-STRUCTURAL BLANKET MATERIALS | • | 1985-1990 | 1990-1995 | 1995-2000 | 2000-2005 | |--------------------------|---|--|---|--| | • Solid Breeders | Develop baseline
properties data and
fabrication methods | Develop reference data
and fabrication methods | • Evaluate commercial fabrication methods | | | | Collect thermochemical
and transport data for
candidate materials | Evaluate effects of
oxidizing environment on
material properties | Complete properties data
on prime materials | | | | Determine effects of low
fluence irradiation on
material behavior | Moderate fluence data on
selected materials | High fluence data on
prime candidate
materials | Dynamic in-situ tritium
recovery test of prime
material in relevant
neutron energy environ-
ment | | • Liquid Breeder/Coolant | Develop baseline physical properties data | Evaluate performance of
primary candidate
materials | | | | | Develop baseline thermo-
chemical properties data | | | | | • Hultiplier/Moderator | Establish fabrication requirements | Develop improved micro-
structures and fabrica-
tion methods | Evaluate commercial
fabrication methods
including recycle of Be | | | | Evaluate thermochemical performance | Determine tritium
thermodynamic and
transport properties | High fluence data on
prime candidates | Qualify materials for
fusion applications | | • | Evaluate erfects on low
fluence irradiation on
materials behavior | Moderate fluence data on
selected material | | | | • Ceramic Insulators | Establish baseline
properties and fabri-
cation requirements | Develop improved forms
of candidate materials | Evaluate selected
materials in detailed
test matrix | Qualify materials for
fusion applications | | | Collect baseline electrical and mechanical properties data | Develop optimized micro-
structures | | | | | Evaluate effects of low
fluence irradiation on
properties data | Moderate fluence irradi-
ation effects on materi-
als properties | High fluence data on
prime candidates | |