JNJTTAL THOUGHTS ON TECHNICAL PLANNING FOR FUSION NUCLEAR TECHNOLOGY

MOHAMED A. ABDOU

TPA VICK-OFF MEETING LAKE GENEVA, WISCONSIN APRIL 23-24, 1985

MOTE:

THE PURPOSE OF THE MATERIAL PRESENTED HERE IS ONLY TO STIMULATE DISCUSSIONS. No ATTEMPT ON "WORD ENGINEERING" OR SELECTING A RECOMMENDED APPROACH HAS BEEN MADE.

STATUS OF EXISTING EFFORTS (FINESSE) ON TECHNICAL PLANNING FOR FUSION MUCLEAR TECHNOLOGY

TSSUES

- TDENITIFIED, CHARACTERIZED AND DOCUMENTED
 (~ 125 issues)
- TSSUES RANKED INTO CLASSES
 (CRITICAL, VERY IMPORTANT, ETC.)
 - CAN NOT ASSIGN ABSOLUTE PRIORITY WITHIN A CLASS

FXPERIMENT & MODEL REQUIREMENTS

- EXPERIMENTS: QUANTIFIED AND DOCUMENTED REQUIREMENTS

 (TYPES OF FXPERIMENTS, ENVIRONMENTAL CONDITIONS NEEDED
 IN THE EXPERIMENTS)
- ANALYTICAL MODELS/THEORY: No EFFORT YET TO IDENTIFY NEEDS

FACILITIES

- FXISTING:
 - FVALUATED CAPABILITIES AND LIMITATIONS (DOCUMENTED)
 - PRESENT EFFORT: IDENTIFYING SPECIFIC EXPERIMENTS (FISSION REACTORS AND NON-NEUTRON TEST STANDS)
- Mew:
 - BEING EVALUATED
 - Mon-neutron test stands are a large part
 - MEHTRON SOURCE NEEDED IS VOLUMETRIC (PLASMA-DRIVEN?)

STATUS (CONT'D)

TEST PLAN

- Purpose is to define role, timing, characteristics and costs of major experiments
- FFFORT IS IN ITS INITIAL STAGES
 INITIAL EFFORT HELPED IDENTIFY:
 - AREAS WHERE MORE TECHNICAL WORK NEEDED
 - QUESTIONS THAT REQUIRE PROGRAMMATIC GUIDANCE

SUMMARY

- WE UNDERSTAND THE ISSUES
- WE KNOW WHAT WE NEED TO DO (EXPERIMENTS, FACILITIES, MODELS)
 TO RESOLVE THEM
- But, there are some difficult questions whose answers are necessary for developing a technical plan.

MAJOR (PROGRAMMATIC) QUESTIONS (AREAS OF DIFFICULTY IN DEVELOPING TECHNICAL PLAN)

1) SHOULD WE CONNECT GOALS WITH TIME?

YES, BECAUSE

- IT HELPS DEFINE A POSITIVE IMAGE FOR FUSION AND FACILITATE COMMUNICATION WITH ADMINISTRATION/CONGRESS
- IT PROVIDES AN INTERNAL DRIVER WITHIN THE PROGRAM AND MAKES IT EASIER TO MEASURE PROGRESS

MO, BECAUSE

- NEEDS ACCURATE KNOWLEDGE OF BUDGET
- IMPLIES ABILITY TO PREDICT THE NATURE OF <u>FUTURE</u>

 <u>TECHNICAL RESULTS</u> (AT LEAST NO MAJOR POSITIVE OR

 NEGATIVE RESULTS) AND THE TIME IT TAKES TO RESOLVE

 ISSUES

SUGGESTED RESOLUTION?

- CONNECT "FLEXIBLE" GOALS WITH TIME
- GOALS SHOULD BE STATED CAREFULLY TO ENSURE FLEXIBILITY (E.G., TO REFER TO BROAD PROGRESS RATHER THAN A WELL-DEFINED SINGLE ACHIEVEMENT)

MAJOR (PROGRAMMATIC) QUESTIONS (CONT'D)

- 2) WHAT SHOULD WE ASSUME ABOUT RUDGET (FUNDING LEVEL TO YEAR 2000)?
 - A) SHOULD WE ASSUME A BUDGET AND PLAN -- THEN DETERMINE WHAT WE CAN DO WITH IT?
 - OR B) Should we define what we need technically and estimate costs?

OBSERVATION

- MEITHER APPROACH IS SATISFACTORY
 - A) APPROACH MAY RESULT IN TOO LITTLE TECHNICAL WORK TO ACHIEVE SIGNIFICANT PROGRESS (OR AT LEAST VERY HIGH RISK PROGRAM)
 - B) APPROACH MAY RESULT IN CONSERVATIVE PLAN THAT CAN NOT BE AFFORDED

SUGGESTED RESOLUTION

CARRY OUT BOTH APPROACHES AND ITERATE UNTIL A
MEANINGFUL PLAN WITH ACCEPTABLE RISK AND AFFORDABLE
COST IS FOUND

OPTIONS FOR STATING THE (SUB) GOAL FOR FNC. (FNT = FUSION MUCLEAR COMPONENTS)

OPTION 1

GENERATE SUFFICIENT DATA FOR FMC TO PERMIT QUANTITATIVE ASSESSMENT OF THE POTENTIAL ECONOMIC AND ENVIRONMENTAL MERITS OF FUSION

OPTION 2

PERFORM INTEGRATED EXPERIMENTS FOR FNC IN FUSION-RELEVANT ENVIRONMENT

NPTION 3

OPERATE (RELIABLY) FMC IN A REACTORTRELEVANT FUSION ENVIRONMENT

NPTION 4

ESTABLISH ENGINEERING FEASIBLITY OF FMC

EXAMPLE OF A DETAILED GOAL DEFINITION

FSTABLISH ENGINEERING FEASIBILITY

- ESTABLISH CONFIDENCE IN THE ABILITY TO REACH (EXTRAPOLATE TO) ATTRACTIVE REACTOR CONDITIONS
- OPERATE SUBSYSTEMS (OR INTEGRATED TEST MODULES) SUCCESSFULLY (OR RELIABLY) IN A REACTOR RELEVANT FUSION ENVIRONMENT
- FSTABLISH (QUANTITATIVELY) THE PRESENCE OF A DESIGN WINDOW FOR ATTRACTIVE REACTOR CONDITIONS
- EXPLORE PHENOMENA AND DEVELOP EXPERIMENTALLY-VERIFIED MODELS
 TO PREDICT PERFORMANCE

KEY PARAMETER	REACTOR-RELEVANT FNVIROMENT	REACTOR CONDITIONS
NEUTRON WALL LOADING, MW/m ²	?	5
SURFACE HEAT FLUX	DEPENDS	DEPENDS
FLUENCE, MW.Y/M ²	2-4	15-20
MUCLEAR SYSTEM MTRF, DAYS	1600	16000
NUCLEAR SYSTEM AVAILABILITY	30%	909
TRITIUM SELE SUFFICIENCY	LOCAL	GLOBAL

FIGURE-OF-MERIT TO MEASURE PROGRESS TOWARD GOALS

• DEGREE OF TESTING

- BASIC PROPERTY MEASUREMENT
- SINGLE EFFECT TESTS
- MULTIPLE EFFECT TESTS
- INTEGRATED TESTS
- COMPONENT TESTS
- SYSTEM TESTS
- MUMBER OF ISSUES RESOLVED, NUMBER REMAINING

• DESIGN WINDOW

- Degree of uncertainty relative to boundary (MEASURE OF ISSUE RESOLUTION, QUALILTY OF DATA)
- WIDTH OF DESIGN WINDOW (MEASURE OF IMPROVEMENT)

ORSERVATIONS

- WILL PROBABLY NEED A COMPOSITE
- FIGURE OF MERIT SHOULD <u>NOT</u> BE SPECIFIC TO A DESIGN CONCEPT

ORGANIZATION OF DISCIPLINES

MATERIALS AND NUCLEAR TECHNOLOGY

- DIFFICULT TO SEPARATE INTO TWO COMPLETELY SEPARATE
 ACTIVITIES FOR OBVIOUS REASONS. COMPLETE SEPARATION
 MAY RESULT IN SERIOUS FLAWS IN TECHNICAL PLANS
- MORE LOGICAL:
- MATERIALS AS A SUBELEMENT OF NUCLEAR TECHNOLOGY OR
 - MUCLEAR TECHNOLOGY AS A SUBELEMENT OF MATERIALS (DIFFICULT TO IMPLEMENT FOR MANY REASONS)

SUGGESTED RESOLUTION

- KEEP AS TWO SEPARATE ELEMENTS AND
 - PROVIDE A WORKING DEFINITION FOR EACH
 - ENSURE INTERACTION AMONG THE TWO ACTIVITIES
 - TWO MEMBERS COMMON TO BOTH GROUPS
 - A MECHANISM TO RESOLVE DIFFERENCES IN PHILOSOPHY, GOALS, ETC. (E.G., END-OF-LIFE IRRADIATION TESTS VERSUS EARLY LIFE PHENOMENA EXPERIMENTS)

PASIC MATERIALS

- CONCERNED WITH BASIC PROPERTIES OF MATERIALS
- EXPERIMENTS FOR SINGLE MATERIAL, GEOMETRY-INDEPENDENT TESTS

NUCLEAR TECHNOLOGY

- CONCERNED WITH R&D FOR NUCLEAR COMPONENTS
- ALL EXPERIMENTS AND MODELS EXCEPT THOSE FOR BASIC MATERIAL PROPERTIES

FXISTING ACTIVITIES, TASK GROUPS, FTC. RELEVANT TO FUSION NUCLEAR TECHNOLOGY AND MATERIALS

- FINESSE
 - TECHNICAL PARTICIPANTS (~ 20)
 - FXECUTIVE COMMITTEE (12)
 - ADVISORY COMMITTEE (10)
- DESIGN/SYSTEM STUDIES
- PLASMA INTERACTIVE COMPONENTS TASK GROUPS
 - HHEMCD (HIGH HEAT FLUX MATERIALS AND COMPONENT Nevelopment)
 - PMI (PLASMA MATERIALS INTERACTION)
- MATERIALS TASK GROUPS
 - ANTP (ALLOY DEVELOPMENT FOR IRRADIATION PERFORMANCE)
 - DAFS (DAMAGE ANALYSIS AND FUNDAMENTAL STUDIES)
 - SPM (SPECIAL PURPOSE MATERIALS)

SUGGESTIONS ON ORGANIZATION OF TPA FOR FNT

BASIC ORGANIZATIONAL APPROACH

- 1) USE EXISTING FINESSE ORGANIZATION
 - RESOURCES TO DO THE TECHNICAL WORK
 - RESOURCES TO PROVIDE <u>INITIAL</u> AUDIT OF WORK AND RECOMMENDATIONS (ADVISORY AND EXECUTIVE COMMITTEES, INTERNATIONAL PARTICIPANTS AND CONNECTIONS TO THE SUMMIT PROCESS)
- 2) SELECT A TPA SUBGROUP FOR FMT
 - RESPONSIBLE FOR WRITING THE TECHNICAL PLAN FOR FNT
 - Interacts with FINESSE Test Plan group to specify groundrules, etc.

QUESTION

How much time are we permitted to ask the TPA subgroup members to spend on TPA?

ORGANIZATION OF TPA FOR FNT (CONT'D)

ORGANIZATION OF TECHNICAL TOPICS

- A. ORGANIZATION BY COMPONENT
 - 1. PLANKET/FIRST WALL
 - A. LIQUID METAL BLANKETS
 - B. SOLID BREEDER BLANKETS
 - c. OTHERS
 - PLASMA-INTERACTIVE COMPONENTS (FIRST WALL, LIMITER, DIVERTOR, DIRECT CONVERTERS, ETC.) ENGINEERING ASPECTS
 - 3. TRITIUM AND VACUUM SYSTEMS
 - 4. OTHERS
- B. ORGANIZATION BY FACILITIES
 - 1. ONLY TO THE EXTENT NOT COVERED IN A (OR REQUIRE A CROSS COMPONENT EXAMINATION) E.G., TESTING IN FUSION ENVIRONMENT ISSUES
- C. OVERALL TEST PLAN

EXPERIMENT PLANNINGIs a Key Element of Technology Development

FINESSE PROCESS For Experiment Planning

Obtaining Availability and Fluence Data For Blanket Is Most Difficult

