IMPACT OF PULSED AND STEADY STATE PLASMA OPERATION ON NUCLEAR TESTING IN ITER

MOHAMED A. ABDOU

ITER Workshop on Testing Program
Garching, FRG
July 1988

Importance of Steady State Operation for the Nuclear Testing Phase in ITER

- To Substantially Increase the Capability for Meaningful Nuclear Technology Testing
- To Reduce the Failure Rate and Improve the Reliability of Many of the Basic ITER Components

Effects of Pulsed Plasma Operation on Nuclear Technology Testing

- Time-Dependent Changes in <u>Environmental Conditions</u> for Testing:
 - Nuclear (volumetric) heating
 - Surface heating
 - Poloidal magnetic field
 - Tritium production rate
- Result in Time-Dependent Changes and Effects in <u>Response</u> of Test Elements that:
 - Can be more dominant than the steady-state effects for which testing is desired
 - Can complicate tests and make results difficult to model and understand

Length of Burn Time?

Length of Dwell Time?

Response (e.g., Temperature):

Burn: $F = F_0 (1 - e^{-t/\tau})$

Dwell: $F = F_0 e^{-t/\tau}$

 τ = characteristic Time Constant

Allowable Variation (During a Specific Test)

- The goal is not just reaching equilibrium. It is to stay at equilibrium during test
- Small changes in some fundamental quantities result in large changes in key parameters

e.g., 5% change in SB temperature results in a factor of 5 change in Tritium Diffusion Time Constant

Guidelines (95% Level) burn time $> 3 \tau$ dwell time $< 0.05 \tau$

Note: Doubling or tripling the allowable variation will <u>not</u> significantly alter conclusions

VARIATION OF TEMPERATURE WITH TIME FOR DIFFERENT DWELL TIMES (LIALO2 BREEDER)

Table 3-5 Approximate Characteristic Time Constants in Representative Blankets

Flow	
Solid Breeder Purge Residence	6 s
Liquid Breeder Coolant Residence	30 s
Liquid Breeder Cooling Circuit Transit	60 s
Thermal_	
Structure Conduction	4 s
Structure Bulk Temperature Rise	20 s
Liquid Breeder Conduction (Li)	30 s
Solid Breeder Conduction ($\frac{1}{2}$ -cm plate) (1-cm plate)	50-100 s 200-400 s
Coolant Bulk Temperature Rise (200 K at 4000 MW _t) Li LiPb	100 s 1500 s
Solid Breeder Bulk Temperature Rise (LiAlO ₂ , 300-1000°C) Front (Near Plasma) Back (Away from Plasma)	120 s 1800 s
Material Interactions Dissolution of Fe in Li (500°C)	40 days
<u>Tritium</u>	
Diffusion Through Solid Breeder (LiAlO ₂ , 0.2 μm grains) 1250 K 750 K	8-200 s 13-300 hours
Surface Adsorption (LiA10 ₂)	3-10 hours
Diffusion Through SS316 800 K 600 K	10 days 150 days
Inventory in Solid Breeder (Water-Cooled LiAlO ₂ , 0.2 µm grains) 67% of equilibrium 99% of equilibrium	6 months 4 years
Inventory in Liquid Breeder LiPb Li	30 minutes 30 days

TIME CONSTANTS FOR KEY NUCLEAR PROCESSES RANGE FROM VERY FAST TO VERY SLOW

	Time Constants		
	Fast	Fast	
	Seconds		
Heat Conduction			
Flow Processes			
	Minutes		
Thermal Processes			
	Hours		
Tritium Processes Material Interactions Stress Relaxation			
Stress Relaxation	Days		
Tritium Release			
Tritium Inventory Radiation Effects Synergistic Effects Subsystem Interactions	Weeks		
Cabsystem interactions	Slow		

Most Critical Nuclear Issues for Testing in the Fusion Environment Have Two Characteristics:

- 1) Processes with long time constants
- Crucial dependence on other processes with short time constants (It takes a long time to establish equilibrium; a short time to ruin it)

Most Critical Nuclear Issues For Testing in trhe Fusion Environment Involve Many Proceses/Phenomena

- 1) some with very short time constants
- 2) some with very long time constants

Burn Time?

Must be longer than 3 τ for the process with longest time constant

t_b > Days for Many key Processes

Dwell Time?

Must be shorter than 0.05τ for the process with shortest time constant

t_s « 5 s for Many key Processes

Examples of Critical Issues Involving Processes with Widely Different Time Constants

With Widery Billetellt Time Constants			
Issue	Fast Response	Slow Response	
Tritium Release	Tritium Production (~0 s)	Low Temp. (700K) Tritium Diffusion	
from Solid	Nuclear Heating (~0 s)	(days)	
Breeders	Temperature (seconds)	Surface Adsorption/Desorption	
	Tritium Diffusion (high	(hours)	
	temp. 1200K) (seconds)	Radiation Effects (very long)	
	Temperature Gradient (seconds)	(can markedly slow down pore	
		diffusion)	
Corrosion/	Nuclear Heating (~0 s)	Loop Temperature (½ hr)	
Redeposition	Temperature (<5 s)	Dissolution of Fe in Li (40 days)	
	Temperature Gradients (<5 s)	Chemical Equilibrium - Concentration	
		Buildup (months)	
Structural	Primary Stresses (seconds)	Thermal & Irradiation Stress	
Response	Thermal Stresses (minutes)	Relaxation (months)	
		Radiation Damage (months to years)	
		Effects of Cycling and Power	
		Variations (months to years)	
		Surface Damage (e.g., erosion,	
		corrosion)	

THE HEAT SOURCE (MAGNITUDE AND TIME DEPENDENCE)
DETERMINES TEMPERATURES IN THE BLANKET, WHICH
ACTIVATES MANY IMPORTANT ENGINEERING PROCESSES

<u>Tritium Transport in Solid Breeders</u>

Mechanisms of Tritium Transport

- 1) Intragranular Diffusion
- 2) Grain Boundary Diffusion
- 3) Surface Adsorption/Desorption
- 4) Pore Diffusion
- 5) Purge Flow Convection

- These mechanisms have different time-dependent behavior
- Results from pulsed tests will be very difficult to understand and extrapolate

Tritium Release: Diffusion

Tritium Release: Adsorption/Desorption

Tritium Released as a Function of Time for Steady vs. Pulsed Operation (No Adsorption/Desorption)

TRITIUM RELEASED AS A FUNCTION OF TIME FOR STEADY STATE VS. PULSED OPERATION

Different Dwell Times (tritium release)

Effect of Time-Dependent Changes in Poloidal Magnetic Field on Pressure Drop in Liquid Metal Tests

Effect of Time-Dependent Changes in Poloidal Magnetic Field on Velocity Profile for Liquid Metal Tests

Important Remarks on Pulsed vs. Steady State Operation During Nuclear Testing Phase in ITER

- There are some issues that can be tested with ~500 s plasma burn
 - e.g., neutronics shielding (some) fluid flow processes
- However, most critical nuclear issues for testing in the unique fusion environment of ITER require striving for steady state operation
 - e.g., Tritium Recovery from Solid Breeders
 Liquid Metal Corrosion/Redeposition
 Structure Response and Failure Modes
 Subsystems Interactions
- Pulsing does not yield average response in many cases.
 It often yields different results (activate different phenomena and threshold effects)
- Many key nuclear issues involve several processes with widely varying time constants
 - require very short dwell time(near zero)
 - require very long burn time (days)
 - difficult to reproduce synergistic effects with pulsing
- In Summary: Pulsing substantially degrades the engineering simulation; makes it difficult to understand the results and extrapolate to future fusion devices