### FINESSE OVERVIEW

# Mohamed A. Abdou UCLA

Presented in the International Workshop on Fusion Nuclear Technology Testing and Facilities, Held at UCLA, March 10-13, 1985.



#### **FINESSE**

# A STUDY OF THE ISSUES, PHENOMENA AND EXPERIMENTAL FACILITES FOR FUSION NUCLEAR TECHNOLOGY

### **Objectives**

- Understand Issues
- Develop Scientific Basis for Engineering Scaling and Experimental Planning
- Identify Characteristics, Role and Timing of Major Facilities Required



# FINESSE ORGANIZATION

- Major Participation by Key U. S. Organizations:
  - UCLA, ANL, EG&G, HEDL, MDAC, TRW, GAC
  - LLNL, PPPL, LANL, SNL, ORNL
- Significant International Participation:
  - Canada, Europe, Japan
- Broad Participation by <u>Fusion Community:</u>
  - Advisory Committee
  - Domestic, International Workshops



# FINESSE PRINCIPAL TECHNICAL TASKS

- I. Identification of Issues
- II. Quantifying Test Requirements
  - A. Survey of Testing Needs
  - B. Quantifying Test Requirements
- III. Evaluation of Experience from Other Technologies
  - A. Fission
  - B. Aerospace
- IV. Survey and Evaluation of Test Facilities
  - A. Non-Fusion Devices
  - B. Fusion Devices
  - V. Comparative Evaluation of Test Facilities, Scenarios
- VI. Recommendations on Fusion Nuclear Technology Development Strategy



FINESSE is a technical study to provide information for effective planning of fusion nuclear technology experiments and facilities.

FINESSE PROCESS is an APPROACH For Experiment Planning



#### **EXPERIMENT PLANNING**

Is a Key Element of Technology Development





# FINESSE PROCESS For Experiment Planning



# Characterize Issues

- Assess Accuracy and Completeness of Existing Data and Models
- Analyze Scientific/Engineering Phenomena to Determine (Anticipate) Behavior, Interactions and Governing Parameters in Fusion Reactor Environment
- Evaluate Effect of Uncertainties on Design Performance
- Compare Tolerable and Estimated Uncertainties
- △ Quantified Understanding of Important Issues, Interactions, Parameters . . .



# Quantify Experimental Needs

- Survey Needed Experiments
- Explore Engineering Scaling Options
   (Engineering Scaling is a Process to Develop Meaningful Tests at Experimental Conditions and Parameters Less Than Those in a Reactor)
- Evaluate Effects of Scaling on Usefulness of Experiments in Resolving Issues
- Develop Technical Test Criteria for Preserving Design-Relevant Behavior
- Identify Desired Experiments and Key Experimental Conditions





- Survey (Availability)
- Evaluate Capabalities and Limitations
- Define Meaningful Experiments (Experiment Conceptual Design a Tool)
- Estimate Costs

- Explore Innovative Testing Ideas
- Assess Feasibility of Obtaining Desired Information (e.g. I & C Limitations)
- Develop Preliminary
   Conceptual Designs of Facilities
   Cost Estimates
- Trade offs in Sequential and Parallel Experiments and Facilities
- O Define Major Facilities



# Develop Test Plan

- Define Test Program Scenarios Based on
  - Promising Design Concepts
  - Importance of Issues
  - Desired Experiments
  - Possible Test Facilities
- Compare Risk, Usefulness and Cost of Test Program Scenarios



# FUSION NUCLEAR TECHNOLOGY ISSUES HAVE BEEN:

- Identified
- Characterized
- Prioritized



## DT FUEL SELF SUFFICIENCY

- Critical Requirement for Renewable Energy Source
- Self-Sufficiency Condition:

Achievable TBR > Required TBR

- Achievable TBR Analysis Shows:
  - TBR Strong Function of Reactor System, Blanket Concept
  - Best Blanket Concepts: TBR  $\sim 1.05$  1.2 Present Uncertainties:  $\sim 20\%$
- Required TBR Analysis Shows:
  - Strong Function of Several Physics, Engineering Parameters



### Attaining DT Fuel Self Sufficiency Requires Success in Physics and Engineering





# POTENTIAL IMPACT

#### Feasibility Issues

- May Close the Design Window
- May Result in Unacceptable Safety Risk
- May Result in Unacceptable Reliability, Availability or Lifetime

#### **Attractiveness Issues**

- Reduced System Performance
- Reduced Component Lifetime
- Increased System Cost
- Less Desirable Safety or Environmental Impact



# **DESIGN WINDOW ISSUES**

#### Issue

An Effect That Imposes a <u>Limit</u> on Design Window Represents an <u>Issue</u>

#### **Important**

If <u>Uncertainty</u> in Defining the Limit is Wider Than Design Window, the Issue is <u>Important</u>









U(T): Any of: T<sub>s</sub> = 650 C T<sub>int</sub> = 550 C h<sub>m</sub> = 0.7h

Uncertainties in MHD, Corrosion, Heat Transfer, Radiation Effects Represent Major Issues

# MAJOR ISSUES FOR LIQUID METAL BLANKETS

- DT Fuel Self Sufficiency
- MHD Effects
  - Pressure Drop
  - Fluid Flow
  - Heat Transfer
- Compatibility, Corrosion
- Structural Response under Irradiation
- Tritium Extraction and Control
- Failure Modes



# MAJOR ISSUES FOR SOLID BREEDER BLANKETS

- DT Fuel Self Sufficiency
- Tritium Recovery, Inventory
- Breeder Temperature Window and Control
- Irradiation Effects: Structure, Breeder, Multiplier
- Thermal/Mechanical Interaction:
   Breeder/Structure/Multiplier/Coolant
- Tritium Permeation (T<sub>2</sub>, T<sub>2</sub>0)
- Failure Modes



# MAJOR ISSUES FOR PLASMA INTERACTIVE COMPONENTS (First Wall, Limiter, Divertor, etc.)

- Erosion and Redeposition Mechanisms and Rates under Various Plasma Edge Conditions
- Thermomechanical Loading and Response
- Electromagnetic Loading and Response



# MAJOR ISSUES FOR TRITIUM PROCESSING SYSTEM

- Plasma Exhaust Processing: Impurity Removal from Fuel
  - Extraction Efficiency
  - Reliability
- Coolant: Tritium Permeation and Processing
- Cryopumps Performance, Lifetime
- Reactor Room Air Detritiation Efficiency, Reliability
- Tritium Monitoring, Accountablility



# MAJOR ISSUES FOR RADIATION SHIELDING:

- Accuracy of Prediction
- Data on Radiation Protection Requirements

# MAJOR ISSUES FOR INSTRUMENTATION AND CONTROL

- Accuracy, Decalibration in Fusion Environment
- Lifetime under Irradiation



# IMPLICATIONS OF FUSION NUCLEAR ISSUES

- Fusion Environment is Unique
- New Phenomena Expected Due to Interactions:
  - Environmental Conditions
     Neutrons, Magnetic Field, Heating,
     Tritium, etc.
  - Subsystems and Components
- New Phenomena Result in Critical Issues:
  - Feasibility
  - Attractiveness
- Need New Knowledge
  - Carefully Planned Experiments



# TYPES OF EXPERIMENTS (TESTS)

BASIC Tests
 Basic Property Measurements

SEPARATE EFFECT Tests
 Explore Simple Phenomena

• MULTIPLE EFFECT/INTERACTION Tests

**Explore Complex Phenomena** 

Multiple Environmental Conditions

Multiple Interactions among Physical Elements

• INTEGRATED Tests

Concept Verification, Engineering Data

All Environmental Conditions, Physical Elements

● COMPONENT Tests

Full-Size Component under Prototypical Conditions



# FACILITIES FOR NUCLEAR EXPERIMENTS

- Non-Neutron Test Stands
- Neutron-Producing Facilities:
  - Point Neutron Sources
  - Fission Reactors
  - Fusion Devices



### **NON-NEUTRON TEST STANDS**

- Can Play an Important Role:
  - Particularly for Fluid Flow/ Electromagnetic Issues
  - When Radiation Effects and Extensive Bulk Heating are Not Dominant Issues
- More Useful for Liquid Metal Blankets;
   Limited Value for Solid Breeder Blankets
- New Facilities are Required



#### Liquid Metal Blanket MHD Experiments Needs





# MANY LIQUID METAL BLANKET ISSUES CAN BE ADDRESSED BY THREE FACILITIES

| Testing Condition    | 1<br>Momentum<br>Transfer | 2<br>Heat<br>Transfer | 3<br>Mass<br>Transfer |
|----------------------|---------------------------|-----------------------|-----------------------|
| Velocity Profile     | x                         | x                     | ×                     |
| Magnetic Field       | x                         | x                     | х                     |
| Geometry             | x                         | X                     | X                     |
| Temperature Gradient | <del></del>               | X                     | X                     |
| Temperature Level    |                           | _                     | х                     |
| Material             | -                         |                       | х                     |
| Time                 |                           | . —                   | х                     |
| Impurity Level       |                           |                       | х                     |
| Outside B Field      | .—                        |                       | х                     |

x = Important

- = Not Important



# NEUTRONS ARE NECESSARY FOR MANY KEY EXPERIMENTS

- A Key Element of the Fusion Environment
  - Produce Large Single and Interactive Effects/Changes
  - Cause Numerous Critical Feasibility Issues
- Only Practical Method to Provide in Experiments:
  - Bulk Heating
  - Radiation Effects
  - Specific Reactions



# **NEUTRON-PRODUCING FACILITIES**

- Accelerator—Based "Point" Sources
- Fission Reactors
- Fusion Devices



# POINT NEUTRON SOURCES CAPABILITIES

| Facility  | Status                               | Peak Flux* n/cm <sup>2</sup> · s | Testing Volume cm <sup>3</sup> |
|-----------|--------------------------------------|----------------------------------|--------------------------------|
| RTNS-II   | In Use                               | 5 x 10 <sup>12</sup>             | 0.1                            |
| LAMPF A-6 | Operational                          | 1 x 10 <sup>13</sup>             | 20000                          |
| FMIT      | Design Completed<br>Project Deferred | 1 x 10 <sup>15</sup>             | 10                             |

\*Fusion First Wall Flux at 5 MW/m<sup>2</sup>:  $2 \times 10^{15} \text{ n/cm}^2 \cdot \text{s}$ 



# POINT NEUTRON SOURCES CONCLUSIONS

- Existing Sources Very Limited in Flux and Volume
  - Best Suited for:

**Neutronics Studies** 

Limited Miniature Specimen Irradiation

- FMIT Can Provide High Fluence
  - Fission Reactor Testing Still Required
  - Fusion Reactor Testing Still Required



# FISSION REACTOR UTILIZATION

#### Incentive for Use

Only Source Available Now to Provide:

- "Bulk Heating" in Significant Volume (Unit Cell) Experiments
- Significant Fluence

#### Limitations

- Different Spectrum
- Limitations on Simulating Fusion Environment (Electromagnetics, Surface Heat Flux, etc.)
- Limits on Temperature
- Small Test Size (<15 cm)</li>



## FISSION REACTOR UTILIZATION

- Fission Reactors Can, Should Be Used to Address Many Important FNT Issues
- Suitable, Necessary for Solid Breeders
- Not as Useful for Liquid Metals
- Characteristics and Timing of Major Solid Breeder
   Experiments in Fission Reactors Are Being Developed



# TESTING IN FUSION DEVICES

### Purpose of FINESSE Effort

- Understand Role of Fusion Devices
- Quantify Requirements of Nuclear Testing on Parameters and Features of Fusion Testing Devices e.g., Wall Load, Fluence, Test Area
   Develop Engineering Scaling

Effort Generic to All Device Types

- Understand Impact of Nuclear Testing on Cost, Performance (e.g., availability) of Various Types of Fusion Devices
  - e.g., On Combined Physics/Technology Facility
    On Technology-Dedicated Device



## ROLE OF FUSION DEVICES FOR NUCLEAR TESTING

- Confirm Data from Non-Fusion Facilities
- Complete Exploration of Phenomena
- Integrated Tests
   Concept Verification
   Engineering Data
- In the Long Term:
   Component Development
   Reliability Data



#### SPECIFIC FEATURES OF FUSION TEST DEVICES NOT AVAILABLE IN NON-FUSION FACILITIES

- Simulation of All **Environmental Conditions** 
  - Neutrons
- Electromagnetics
- Plasma Particles
   Tritium

- Vacuum
- **Correct Neutron Spectrum**
- 3. Large Volume of Test Element/Module Some Test Require ~1 m x 1 m x 0.5 m
- Large Total Volume, Surface Area of Test Matrix Needed:  $>5 \text{ m}^2$



# FUSION NUCLEAR TECHNOLOGY TESTING REQUIREMENTS ON FUSION FACILITY PARAMETERS

| Fusion Device Parameter                                                   | Minimum             | Substantial<br>Benefits |  |
|---------------------------------------------------------------------------|---------------------|-------------------------|--|
| Neutron Wall Load, MW/m <sup>2</sup> Surface Heat Load, MW/m <sup>2</sup> | 1<br>0.2            | 2 - 3<br>0.5            |  |
| Plasma Burn Time, s Plasma Dwell Time, s                                  | 500<br>100          | 1000                    |  |
| Magnetic Field, T                                                         | 1                   | 2 - 3                   |  |
| Continuous Operating Time Availability, % Fluence, MW · y/m <sup>2</sup>  | Days<br>20<br>1 - 2 | Weeks<br>50<br>2 - 6    |  |
| Test Port Size, m <sup>2</sup> x m Total Test Area, m <sup>2</sup>        | 0.5 x 0.3<br>5      | 1 x 0.5<br>10           |  |



#### **OBSERVATIONS ON TRITIUM** CONSUMPTION IN FUSION DEVICES

Tokamak Ignition Requires:

Fusion Power:

200-500 MW

Total DT Burn Time:  $\sim 2 \times 10^5 \text{ s}$ 

Tritium Consumption:

 $\sim$  0.2 kg

Fusion Nuclear Testing Requires:

Fusion Power:

 $\sim$ 20 MW

Total DT Burn Time: Several Years

Tritium Consumption:  $\sim$ 5 kg

Combining 1 and 2 in One Device Requires: 3.

Tritium Consumption:  $\sim 200$  kg



## OBSERVATIONS ON NUCLEAR TESTING IN FUSION DEVICES

- Relatively Long Time (Several Years) Needed for Nuclear Testing Introduces Tritium Supply Problems in First Generation DT Facilities if Facility Fusion Power is Large (Hundreds of Megawatts)
- A Near Full—Scale Tritium Breeding Blanket in a Fusion Device Without Prior Fusion Testing Introduces Important Issues (e.g., Reliability, Cost)



### OBSERVATIONS ON NUCLEAR TESTING IN FUSION DEVICES

 Cost of Providing Fusion Testing for Nuclear Technology Can Be Substantially Reduced if a Low Fusion Power Device Option Can Be Developed, e.g.,

FERF: Fusion Engineering Research Facility

20 - 50 MW

 $5 - 10 \text{ m}^2$ 

 $2-10 \text{ MW} \cdot \text{y/m}^2$ 

Several Ideas for FERF Evaluated

Potential Problems Include:

- Physics Feasibility
- Engineering Feasibility
- Cost
- Timing



#### Obtaining Availability and Fluence Data For Blanket Is Most Difficult





#### Role of Facilities For Fusion Nuclear Technology

| Type of Test              | Basic Tests             | Single, Multiple<br>Interaction | Integrated              | Component   |
|---------------------------|-------------------------|---------------------------------|-------------------------|-------------|
| Purpose of Test           | Property<br>Measurement | Phenomena Exploration           | Concept<br>Verification | Reliability |
| Non-Neutron Test Stands   | <b>├</b>                | PITF<br>Φ→                      |                         |             |
| Point Neutron Sources     | <b>⊢</b>                | <b>⊦-</b> →                     |                         |             |
| Fission Reactors          | <b>⊢</b> ▶              | MSB<br>                         |                         |             |
| Fusion Test Device (FERF) |                         | <b> </b>                        |                         |             |
| ETR/DEMO                  |                         |                                 | <b></b>                 |             |



#### **SUMMARY OBSERVATIONS**

Fusion Nuclear Technology Poses Critical Issues:
 Feasibility
 Attractiveness (Safety, Economics)

- Resolving These Issues Requires:
   New Knowledge
   Experiments, Theory
- Will Involve High Cost, Long Lead Time
- A Technical Process of Studying Issues, Quantifying Testing Needs and Evaluating Experimental Facilities is Very Useful in Providing Decision Makers with Technical Input for Effective R & D Planning



#### SUMMARY OBSERVATIONS (CONTINUED)

 From Now to 1990's (or until a DT Fusion Device Becomes Available), Testing is Possible Only in Non-Fusion Facilities:

Non-Neutron Test Stands

**Fission Reactors** 

**Point Neutron Sources** 

- Non-Fusion Facilities <u>Can</u> Address Many of Fusion Nuclear Technology Issues
- A Number of Non-Neutron Test Stands Can Be Constructed at a Reasonable Cost to Address Many FNT Issues, e.g., Liquid Metal Blanket Issues
- Many Important Experiments Can Be Performed in Fission Reactors, e.g., Unit Cell for Solid Breeders



#### SUMMARY OBSERVATIONS (CONTINUED)

- First Generation DT Fusion Devices, When They Become Available, Will Provide the Earliest Opportunity for FNT Integrated Tests
  - Critical for Concept Verification
- Effective FNT Integrated Tests Impose
   Quantifiable Requirements on Fusion Device
   Parameters (e.g., Wall Load, Plasma Burn Time)
- ►FNT Testing Needs Can Be Satisfied with Relatively Low Fusion Power ( < 50 MW), But Requires Relatively Long Testing Time (Several Years)



#### SUMMARY OBSERVATIONS (CONTINUED)

Number of Blanket Options (Breeder/Coolant/ Structure/Multiplier) Greatly Affects R & D Cost

- However, Present Uncertainties with All Options Appear Too Large to Permit Selection of Only One Option
- More Experimental Data Will Permit Reducing Number of Options
- The Degree of Risk in Selecting One Option Prior to Testing in Fusion Devices Will Become Clearer after Obtaining More Data from Testing in Non-Fusion Facilities



# DETAILS OF FINESSE RESULTS ARE DOCUMENTED IN THE FOLLOWING REPORTS:

- 1. "FINESSE: A Study of the Issues, Experiments and Facilities for Fusion Nuclear Technology Research and Development (Interim Report)," University of California, Los Angeles, PPG-821, also UCLA-ENG-84-30 (October, 1984).
- 2. Numerous Papers in the 6th Topical Meeting on the Technology of Fusion Energy, San Francisco (March, 1985).
- 3. FINESSE Final Report to be Issued (November, 1985).

#### Note:

If you wish to receive a copy of FINESSE Interim Report, please leave your name and address in the secretarial office.



## WE GRATEFULLY ACKNOWLEDGE THE EXCELLENT CONTRIBUTIONS TO FINESSE BY EXPERTS FROM OUTSIDE THE U.S.

CFFTP

P. Gierszewski

KfK

K. Kleefeldt, J. Reimann

**Kyoto University** 

K. Shin

**JAERI** 

M. Nakagawa, Y. Oyama, Y. Seki

University of Tokyo

H. Madarame