ETR: FUSION NUCLEAR TECHNOLOGY TESTING REQUIREMENTS AND ENGINEERING SCALING

M. Abdou M. Tillack

Presented at the ETR Meeting Plenary Session Argonne National Laboratory 17 December 1986

FUSION NUCLEAR TECHNOLOGY

- TOP LEVEL ISSUES
 - FUEL SELF-SUFFICIENCY
 - EFFICIENT, RELIABLE AND SAFE ENERGY CONVERSION AND USE
 - RADIATION PROTECTION OF COMPONENTS, PERSONNEL

SUGGESTED ETR NUCLEAR MISSION

DEMONSTRATE THE PERFORMANCE OF NUCLEAR COMPONENTS AND TRITIUM SELF-SUFFICIENCY AT REACTOR-RELEVANT CONDITIONS

Type of Test	Basic, Separate/Multiple Effect Tests	Integrated	Component
Purpose of Test	Property Data, Phenomena Exploration	Concept Verification	Reliability
Non-Fusion Facilities			
Non-Neutron Test Stands			
Fission Reactors			
Fusion Facilites		·	
Fusion Test Device	-		
Fusion Engineering/Demonstration		 	

FNT R&D FRAMEWORK

• Non-Fusion Testing (+ Model Development)

Non-Neutron Test Stands Fission Reactors 14 MeV Neutron Sources

- SUPPORT CONCEPTUAL DESIGN SCREENING AND EVOLUTION
- INITIAL VALIDATION OF THEORY AND MODELS
- Provide Data for Design, Construction and Operation of Test Elements and Modules in ETR

• Fusion Testing

- VERIFY THEORY/MODELS, DESIGN CODES
- DATA FOR CONCEPT SELECTION
- DEMONSTRATE PERFORMANCE LEVEL
 EXTRAPOLATABLE TO REACTOR (QUANTIFY?)
- DEMONSTRATE ADEQUATE LEVEL OF RELIABILITY (QUANTIFY?)

FNT TESTING REQUIREMENTS

Major Parameters of Device

- DEVICE COST DRIVERS
- MAJOR IMPACT ON TEST USEFULNESS

• Engineering Design of Device

E•G•,

- Access to Place, Remove Test Elements
- PROVISION FOR ANCILLARY EQUIPMENT
- Accommodation of Failures in Test Elements

SCALING OF MAJOR PARAMETERS

- COST FORCES SCALED-DOWN CONDITIONS
- "LOOK-ALIKE" TEST MODULES ARE USELESS
- "ACT-ALIKE" TEST MODULES ARE NECESSARY
- ENGINEERING SCALING LAWS MUST BE FOLLOWED
 - PRESERVE IMPORTANT PHENOMENA
 - TRADE-OFFS AMONG PARAMETERS

NOT ALL PARAMETERS CAN BE SCALED DOWN SIMULTANEOUSLY

MAJOR PARAMETERS

- NEUTRON WALL LOAD
- SURFACE HEAT LOAD
- PLASMA CYCLE BURN/DWELL TIMES
- MINIMUM CONTINUOUS TIME
- AVAILABILITY
- FLUENCE
- MAGNETIC FIELD STRENGTH
- TEST AREA/SIZE

FNT RECOMMENDED PARAMETERS

0	ETR		Reference	
Parameters	MINIMUM	Desirable	REACTOR	
Neutron Wall Load, MW/m ² Surface Heat Load, MW/m ²	1 0•2	2 - 3 0•5	5 1	
PLASMA BURN TIME, S	500	> 1000 ^A	STEADY	
Magnetic Field, B T	3	5	7	
Continuous Operating Time Availability, % Fluence, B MW · y/m ²	Days 20 1 - 2	WEEKS 30 - 50 3 - 6	Months 70 15 - 20	
Test Port Size, m ² x m Total Test Area, m ²	0.5 x 0.3 5	1 x 0.5 10 - 20		

ASTEADY-STATE PREFERRED

BAT TEST ARTICLE

How Good Are Present Designs?

	Recom	MENDED		
	MINIMUM	DESTRABLE	TIBER-II	NET
NEUTRON WALL LOAD, MW/m ²	1	2 - 3	2/1.3	1
PLASMA BURN TIME, S	500	> 1000 ^A	STEADY	600
MAGNETIC FIELD, A T	3	5	4.5	3.9
AVAILABILITY, %	20	30 - 50	30	25
FLUENCE, MW · Y/M ²	1 - 2 ^B	3 - 6 ^B	3C	0.8c
Fusion Power, MW	< 50		300	600

AAT OUTBOARD REGION

BAT TEST MODULE

CDEVICE LIFETIME

OBSERVATIONS

- PRESENT TIBER-II DESIGN REASONABLY
 SATISFIES MOST OF THE PRESENTLY RECOMMENDED
 FNT VALUES FOR DEVICE MAJOR PARAMETERS
- FROM FNT STANDPOINT, TIBER-II IS PREFERABLE TO NET IN THE FOLLOWING AREAS:

BURN TIME

FLUENCE

WALL LOAD

- AREAS REQUIRING ANALYSIS/REVIEW AND POSSIBLE CHANGE (IF NECESSARY) IN TIBER:
 - Space available for testing (AREA AT FIRST WALL ADEQUATE) DEPTH; ACCOMMODATION OF MANIFOLDS, FEED LINES, ETC.
 - EASE OF INSERTION, REPLACEMENT

PULSING/STEADY STATE OPERATION

- PLASMA CYCLING MEANS TIME-DEPENDENT CHANGES
 IN ENVIRONMENTAL CONDITIONS TESTING
 - NUCLEAR (VOLUMETRIC) HEATING
 - SURFACE HEATING
 - POLOIDAL MAGNETIC FIELD
 - TRITIUM PRODUCTION RATE
- Results in time-dependent changes in <u>RESPONSE</u> of TEST ELEMENTS
 - EFFECTS CAN BE, IN SOME CASES, MORE

 DOMINANT THAN THE STEADY STATE EFFECTS

 FOR WHICH TESTING IS DESIRED
 - EFFECTS CAN COMPLICATE TESTS AND MAKE
 RESULTS DIFFICULT TO MODEL AND UNDERSTAND
- EXAMPLES OF EFFECTS
 - THERMAL CONDITIONS
 - TRITIUM CONCENTRATION PROFILES
 - FAILURE MODES/FRACTURE METHODS
 - TIME TO REACH EQUILIBRIUM

Pulsing strongly affects the solid breeder temperature distribution.

FLUENCE REQUIREMENTS

- Fluence Achievable in Test Module is Considerably Less (factor of 2 or more) Than the Test Device "Lifetime Fluence"
 - ATTENUATION IN DEVICE FIRST WALL AND
 OTHER IN-VESSEL COMPONENTS REDUCES FLUX
 AT TEST MODULES
 (Most test modules must be isolated from
 THE DEVICE "VACUUM")
 - THERE IS INEVITABLY A LONG PERIOD OF FAIL/REPLACE/FIX FOR TEST MODULE (REMEMBER: FIRST TIME TO TEST IN FUSION ENVIRONMENT)
- THE LEVEL OF FLUENCE RECOMMENDED BY FNT SHOULD BE ACHIEVED AT THE TEST MODULE
- RECOMMENDATION:

TIBER-II FLUENCE SHOULD BE ENHANCED OR AT LEAST MAINTAINED AT THE PRESENT 3 MW·y/m². (Do <u>Not</u> reduce)

Obtaining Availability and Fluence Data For Blanket Is Most Difficult

Reaching tritium inventory and recovery equilibrium may require long test times

