TOKAMAK EXPERIMENTAL POWER REACTOR W. M. STACEY, JR., M. A. ABDOU, J. N. BROOKS, I. CHARAK, R. G. CLEMMER, J. DAWSON, K. EVANS, J. A. FASOLO, R. FUJA, S. D. HARKNESS, R. L. KUSTOM, V. A. MARONI, B. MISRA, J. MOENICH, A. MORETTI, J. NOREM, W. F. PRAEG, D. L. SMITH, H. C. STEVEN STEVENS, L. TURNER, S-T. WANG AND C. K. YOUNGDAHL Fusion Power Program Argonne National Laboratory Argonne, Illinois 60439 United States of America #### ABSTRACT A tokamak experimental power reactor has been designed that is capable of producing net electric power over a wide range of possible operating conditions. A net production of 81 MW of electricity is expected from the design reference conditions that assume a value of 0.07 for beta-toroidal, a maximum toroidal magnetic field of 9 T and a thermal conversion efficiency of 30%. Impurity control is achieved through the use of a low-Z first wall coating. This approach allows a burn time of 60 seconds without the in-corporation of a divertor. The system is cooled by a dual pressurized water/steam system that could potentially provide thermal efficiencies as high as 39%. The first surface facing the plasma is a low-Z coated water cooled panel that is attached to a 20 cm thick blanket module. The vacuum boundary is removed 22 cm from the plasma, thereby minimizing the amount of radiation damage in this vital component. It is estimated that the total system could be built for less than 550 million dollars. #### 1. INTRODUCTION Three design studies [1-4] for a tokamak Experimental Power Reactor (EPR) were conducted in the USA during 1974-1976. The general objective of these studies was to define the characteristics of a net electric power producing experimental reactor that could operate in the mid- to late-1980's. The designs that evolved from these studies were, in general, characterized by relatively conservative assumptions about plasma energy confinement and β limits and by technology extrapolations that were constrained to be consistent with the proposed operating date. The conservative β -limits (3-5%) led to rather large devices (major radii greater than 6 m) in two designs, [2-4] while the third design [3] achieved a smaller size by assuming that β of 10% could be obtained with a highly elongated (b/a = 3) doublet-shaped plasma. These studies were, to varying degrees, carried out in sufficient detail to identify the design and technological problems and to define "first-cut" design solutions. A follow-on study at ANL has concentrated on simplifications and cost reductions which can be achieved based upon more favorable β-limits predicted by recent theoretical studies and upon improved engineering design. #### 2. DESIGN SUMMARY An EPR design has been developed which meets the general objectives given in Table 1. A vertical section view of this design is shown in Figure 1. The principal parameters are given in Table 2. Table 1. EPR Design Objectives - 10-50 MWe Net Electrical Power - 1990-95 Initial Operation - Improved Engineering Design - Cost Reduction - Engineering and Materials Testing Capability #### 3. REACTOR PHYSICS AND POWER PERFORMANCES There is recent theoretical evidence [5-9] for the existence of MHD equilibria which support a significantly larger plasma pressure, and, hence, a larger β , than previously had been supposed. Thus, it appears that the β -limit for tokamak plasmas will be determined from MHD stability constraints. Relative to previous EPR design. Table 2. EPR Design Summary | Major radius, R(m) | 4.7 | | |--|--------------------|--| | Plasma radius, a(m) | 1.34 | | | Aspect ratio, A | 3.5 | | | Plasma elongation, b/a | 1.65 | | | Blanket/shield thickness (m) | | | | inner/outer | 0.80/1.30 | | | TF coil bore (m) | 8.73×5.64 | | | Maximum toroidal field, B _{MAY} (T) | 10 (9*) | | | Average beta toroidal, β MAX | 0.07 | | | Plasma current, I(MA) | 7.3 | | | Burn pulse (s) | 60 | | | Duty cycle (%) | 80 | | | Net electrical power (MWe) | 81 | | | Volt-second to plasma (V-s) | 57 | | | First-wall neutron load (MW/m ²) | 0.7 | | | First-wall lifetime (yr.) | <u>></u> 5 | | | Tritium inventory (kg) | 1.3 | | | Reactor containment building | | | | height x diameter (m) | 55 x 54 | | | Total costs (\$M) | 539 | | |
 | | | Operating reference point. An extensive trade-off study was performed [10] to determine the size and geometrical configuration of an EPR which could be able to produce net electrical power and achieve ignition even if confinement is as poor as is predicted by the trapped-ion-mode (TIM) theory. Reasonable equilibria (i.e. those with centrally peaked current profiles, no current reversal, and no excessive distortion of flux surfaces) with q(o) = 1 and q(a) = 3 were found which could support a toroidal beta, $\beta_{\rm t}$, up to $\sim 10\%$. PEST code [11] calculations indicate an upper limit of $\beta_{\rm t} < 6\%$ for plasmas which can be stabilized against kink and ballooning modes; however, a number of important effects are not included in these linear stability analyses. This work led to the choice of $\beta_{\rm t} = 7\%$ and a maximum toroidal field of 9 T as the design basis for EPR, with provision for achieving the design objectives even if $\beta_{\rm t} < 6\%$ by increasing the field to 10 T. A reactor design based on an elongated (1.65) plasma was chosen as the reference point. A series of burn cycle dynamic simulations were carried out in order to evaluate the cycle averaged power performance and the requirements upon the plasma driving and heating systems. The length of the burn pulse is determined ^{*} Performed by A. M. M. Todd, PPPL. by the accumulation of impurities — a pulse length of 60 s is felt to be achievable when a beryllium coating is used on the vacuum chamber surface, as discussed in the next section. Beam penetration calculations were performed to determine the required energy of the deuteron beam, based upon a reduced (1/5 to 1/10) density startup. The power performance parameters are summarized in Table 3, and the plasma driving and heating system requirements are specified in Table 4. The net energy flow during the burn cycle is indicated in Figure 2. Table 3. EPR Power Performance (Nominal) | 60 | |------| | 15 | | 23.4 | | 117 | | 81 | | | Table 4. EPR Plasma Driving and Heating System Requirements for Complete Burn Pulse | 57.0 | |------| | 2.7 | | 2 | | 5.7 | | 6.7 | | 40 | | 4.1 | | 180 | | | Figure 3 shows the variation in the net electrical power, for a 60 s burn cycle, for different values of the principal parameters. There is clearly a wide range of β_t - B_{max}^{TFC} - ϵ_{TH} for which this design would meet the power performance requirements for an EPR. #### 4. IMPURITY CONTROL A passive impurity control measure — coating the vacuum chamber wall with a low-Z material — is proposed for EPR. The net electrical power averaged over the burn pulse has been computed [12] as a function of the surface material and the length of the burn pulse, the latter being determined by the accumulation of impurities. With a bare stainless steel wall, the plasma was quenched immediately upon the termination of auxiliary heating, and the net electrical power was a negative value of several hundred megawatts. Calculations indicate that coating the first wall with a low-Z material will provide sufficient impurity control for the operation of an EPR. It is concluded that a $\sim 1-2$ minute burn pulse and net electrical power production is possible in an EPR using a low-Z coating for impurity control. #### 5. PLASMA HEATING SYSTEMS A number of different alternatives are being considered for heating the EPR plasma from breakdown to ignition. These methods must be capable of producing 40 MW of power for about 4 to 6 seconds in order to heat the plasma to ignition. The most promising alternatives are neutral beam and radio frequency (rf) heating, with neutral beams presently considered to be the primary option. Detailed designs of several neutral beam injector systems which would be applicable to a large machine have been developed. Three options, requiring varying degrees of extrapolation beyond the state of the art for TFTR ion sources, are summarized in Table 5. Two of the options assume the use of positive deuterium ion sources with D fractions of 75 and 95 percent, respectively; these designs may be regarded as lower and upper limits to what might be achieved with sources of positive deuterium ions. Design 1 is the current reference. Design 2 represents a worthy but perhaps not quite attainable goal for further ion source development work. The third option is based on the possibility that a suitable extraction D ion source will be developed for the next generation of machines. To produce the monoenergetic neutral beams required by these machines from a beam consisting initially of positive atomic and molecular deuterium ions, we consider a basic system of an ion source that produces a diverging beam followed by a double focusing D bending magnet, a tapered neutralizer, a second bending magnet and direct energy convertors to recover energy from unused molecular and atomic ions. Zirconium-aluminum getter pumps are presently planned for all systems because of their relative insensitivity to neutron bombardment and their ability to operate at elevated temperatures. Table 5. 40 MW Neutral Beam Injection System for Tokamak EPR | | Design 1 | Design 2 | Design 3 | |---|------------------------|------------------------|-----------------------| | Atomic ion | 180 keV D ⁺ | 180 keV D ⁺ | 400 keV D | | Beam composition (D^+, D_2^+, D_3^+) | (0.75,0.18,0.07) | (0.95,0.03,0.02) | 95% D Assumed | | Ion beam current density (A/cm ²) | 0.135 avg. | 0.135 avg. | 0.080 avg. | | Ion beam power (MW) | 212 | 204 | 76 | | Source gas efficiency | 0.45 | 0.50 | 0.10 | | Gas load/injector
(Torr-l/s) | 70.4 | 41.8 | 15.3 | | Pumping speed/injector (1/s) | 4.2 x 10 ⁶ | 4.0 x 10 ⁶ | 2.6 x 10 ⁵ | | Zr-Al panel area/injector (m ²) | 126 | 120 | 8 | | Electrical power
efficiency | 0.33 | 0.44 | 0.65 | | Overall power efficiency *** | 0.38 | 0.48 | 0.70 | | Net power input (MW) | 121 | 91 | 62 | ^{*} Circular, initially diverging D beam; square, initially converging D beam. #### 6. ENERGY STORAGE AND TRANSFER The energy storage and transfer (EST) system consists of a central energy storage inductor (ESI), a thyristor bridge system to transfer energy between the ESI and the OH coil, EF coil and neutral beam (or rf) systems, and a rectifier to transfer makeup energy from a power substation into the ESI. A separate inertial energy storage unit, consisting of radial-stacked homopolar generators, is used to transfer inductive energy into and out of the OH coil system. The EST design requirements were determined from burn cycle simulations, as discussed in Section 3. The EST system is summarized in Table 6 and described in more detail in Reference 2. The required area has been doubled to allow for regeneration. ^{***}Assumes direct conversion efficiency = 0.85, thermal conversion efficiency = 0.30. [†] Target for $D^+ \rightarrow D^0$ is D gas; 12 injectors with 2 ion sources per injector. # Table 6. Energy Storage and Transfer Systems - Maximum Ratings for Reference Burn Cycle # Equilibrium Field System | Туре | 3 Ø inductor-convertor bridge | |-----------------------------|-------------------------------| | Energy transfer (MJ) | 1770 | | Peak power (MW) | 448 | | Peak current (kA) | 70 | | Peak available voltage (kV) | 26 | | Switching frequency (Hz) | 100 | # Ohmic Heating Systems # Homopolar Generators | No. of generators in series | 10 | |-----------------------------|-------| | No. of drums per generation | 8 | | Total energy transfer (MJ) | 607 | | Peak power (MW) | 957 | | Peak available voltage (kV) | 51.3 | | Peak available current (kA) | 41.1 | | Minimum equivalent capaci- | | | tance (f) | 0.523 | # Rectifier System | Туре | 3 Ø inductor-convertor bridge | |--------------------------|-------------------------------| | Energy transfer (MJ) | 490 | | Peak power (MW) | 56 | | Peak current (kA) | 70 | | Peak voltage (kV) | 0.8 | | Switching frequency (Hz) | 100 | # Neutral Beam System | Type | SCR, DC/AC/DC at kHz | |----------------------|----------------------| | Energy transfer (MU) | 480 | | Voltage (kV) | 180 | | Power (MW) | 120 | # Central Energy Storage Inductor | Superconducting ring dipole | |-----------------------------| | 3700 | | 2750 | | 70 | | 570 | | | | 10.7 | | | ## 6.1 Equilibrium Field System An actively controlled, 3-phase inductor-convertor bridge [13,14] driven from a central ESI is selected as the power supply and energy storage choice. The energy transfer is reversible. #### 6.2 Ohmic Heating System The conceptual design for the EST device for the OH coil is based on using counter cyclonic generator (CCG) type homopolar generators with NbTi coils in a magnetic yoke [2]. The minimum field reversal time in the absence of stray inductances and circuit losses would be 1.92 s. The CCG is disconnected from the OH coil during the burn. The OH coil current and $\mathring{\mathbf{B}}$ are maintained with a separate power supply driven from a central energy storage inductor. An actively controlled inductor-convertor of the type described for the EF coils is used for this application. # 6.3 Neutral Beam Power Supply The neutral beam injector energy transfer system is composed of two major components; a saturated time-delay transformer (STDT), [15] which uses the saturation effects of magnetic cores to act as a current surge limiter, and a high frequency, polyphase-controlled rectifier [16] using SCR switches to enable rapid de-energization of the beam in periods of less than 100 µs. The injector power supply extracts energy from the same central ESI that the EF coil power supply uses. An inductor-convertor similar to that described for the EF coil system drives a high frequency, polyphase invertor. A 10 kHz voltage is developed in a summing transformer, filtered and subsequently rectified. The output lead is connected to the injector through an STDT. In the event of a spark, the STDT prevents energy transfer into the spark and, if necessary, the polyphase rectifier can be phased back quickly enough to remove power from the injector in the event that the discharge path has not cleared in a time beyond which the STDT is unable to absorb the energy. Nonsaturated, longitudinal reactors [17] limit the discharge current of the energy stored in the circuit capacitance of the filament and of the arc power supplies. ## 6.4 Central Energy Storage Inductor The neutral beam injector and/or rf amplifier power supplies and EF and OH coil power supplies extract energy from a central energy storage inductor (ESI). The ESI is a superconducting ring dipole (torus) with a minor radius of 0.8 m, a major radius of 3.9 m, a peak field of 5 T and an inductance of 1.51 h. The design of the conductor for the ESI is based on the Rutherford cable concept with 200 1-mm diameter wires wound on an 0.003 m by 0.097 m fiberglass support strip. The conductors would be the same as those developed for the poloidal coil design. A rectifier power supply draws an average power of 10.7 MW from the substation to resupply losses in the energy storage and transfer system. #### 7. MAGNETS The toroidal and poloidal field coil systems are described in more detail in Reference 16. #### 7.1 Toroidal Field Coils The superconducting toroidal-field (TF) coil parameters are given in Table 7. The TF coils are designed for nominal operation at 9 T and 4.2 K, but with provision to operate at 10 T by pumping down to 3.7 K in order to compensate if β is lower than is anticipated. The TF coils are designed for cryogenic stability. Because most of the resistivity of the copper stabilizer is magnetoresistivity and radiation-induced resistivity, both of which vary across the coil, the copper is graded with more copper on the inner turns where the radiation level and magnetic field are largest. The NbTi is also graded; less is required on the outer turns where the field is lower and the critical current density is higher. A 50 kA sheet conductor is specified, consisting of a sheet of copper with NbTi-copper composite wires stranded around it and soldered to it. Stainless steel reinforcement is wound with the sheet conductor into two pancakes per coil with a support rib between them. The conductor is wound in precompression and the stainless steel in pretension so that the stainless steel will support 60,000 psi tensile stress without stressing the copper beyond 15,000 psi when the coils are energized. Such a conductor is inherently a dc conductor and is enclosed by a high-purity aluminum field shield operating at 18 K to reduce the ac losses from the pulsed plasma and equilibrium fields. The TF coils operate in series to eliminate the possibility of carrying unequal currents, which would produce large bending moments and out-of-plane Table 7. Toroidal Field Coil Parameters | ٠ | Number of coils | 16 | |---|-----------------------------------|---| | | Coil shape | Pure-tension U | | | Superconductor | NbTi | | | Stabilizer | Copper | | | Support material | Stainless steel | | | Support cylinder | Fiberglass-rein-
forced plastic | | | Coil bore, vertical x horizontal | 8.73 x 5.64 m | | | Allowed stress in copper and SC | 15,000 psi | | | Allowed stress in stainless steel | 60,000 psi | | | Operating temperature | 3.7 K (4.2 K) | | | Peak field | 10 T (9 T) | | | Field at plasma | 4.81 T (4.33 T) | | | Total amp-turns | 115 MA-turns (104 MA turns | | | Operating current | 60,000 A (54,000 A) | | | Turns per coil | 60 x 2 | | | Average current density | 1540 A/cm ²
(1386 A/cm ²) | | | | | forces at the coils. Protection circuitry includes a dump resistor which is always connected. A surge in magnet terminal voltage in any coil due to a normal region developing will serve as a signal to disconnect the power supply. The dump resistor is sized to prevent the development of excessive voltage during the discharge. #### 7.2 Poloidal Field Coils The ohmic-heating (OH) and equilibrium-field (EF) coils are located external to the TF coils to facilitate installation and maintenance and to allow them to be superconducting. The location of these coils is shown in Figure 1, and the principal parameters are given in Table 8. The OH coils consist of a central solenoid and ten additional coaxial coils. The central solenoid is between the TF coils and the central support cylinder; it is interrupted every 25 cm axially by a 5-cm high steel ring which transmits the TF coil centering force to the fiberglass-reinforced Table 8. Poloidal Coil Parameters at Maximum Design Ratings | | OH Coils | EF Coils | |--------------------------------------|-----------------------|-----------------------| | Number of coils | Solenoid + 10 | 12 | | Location | Outside TF coils | Outside TF coils | | Superconductor/Stabilizer | NbTi/Cu | NbTi/Cu | | Operating temperature | 4.2 K | 4.2 K | | Current density | 1730 A/cm^2 | 1730 A/cm^2 | | Operating current | 70 kA | 70 kA | | Total amp-turns | 82.3 MA turns | 54.4 MA turns | | Maximum Volt-seconds | 90 V-s | 37 V-s | | Central field | 8 T | 0.3 T | | Maximum rate of change of field | 6.7 T/S | | | Field at plasma | $< 10^{-3} T$ | 0.56 T | | Inductance | 0.73 Н | 0.94 | | Coupling coefficient to plasma | - 0.25 | - 0.175 | | Self inductive energy | 1.75 GJ | 2.3 GJ | | Inductive energy: OH & EF and plasma | 3.7 | 'GJ | plastic support cylinder. This configuration maximizes the central flux core area for a solenoidal OH coil that provides the necessary volt-seconds. The OH coils are energized to give a negative flux before the plasma is formed, then the current in the OH coils is reversed, inducing a current in the plasma. The EF coils are decoupled magnetically from the OH coils by locating them all on the same flux line of the OH coils, operating them in series, and requiring that the numbers of positive and negative amp-turns in the EF coil system be equal. Selection of the flux line and of the coil positions along the flux line are governed by engineering constraints. The currents are selected so as to establish the required equilibrium field configuration in the plasma, using a free-boundary MHD equilibrium code, but subject to the constraint of minimizing energy in the EF coil system. The required field pattern could be achieved for plasma shape factors (d) of 0.25, but not for d = 0.5, with the EF coils excluded from the central flux core and located externally to the TF coils. The EF and OH coils are cryogenically stable. A 70 kA fully-transposed cable of copper and superconducting composite strands around a stainless steel solid or stranded strip is specified. This design is described in Reference 2. A system of water-cooled copper coils is located within the blanket and shield. This coil system provides the ~ 500 V, 5 ms voltage pulse necessary to break down the plasma and also provides the trimming fields necessary to control the plasma position. #### 8. FIRST WALL/BLANKET/SHIELD AND ENERGY CONVERSION SYSTEMS The basic features of the present design point for the first wall/blanket/shield (FW/B/S) are illustrated in Figure 4, summarized in Table 9 and described in more detail in References 19 and 20. The vacuum vessel is an irregular toroidal shell, fabricated from 7-cm thick stainless steel plates that are welded together in sections. This shell forms the primary vacuum boundary for the plasma chamber, is located outside the blanket assembly and provides the principal support for that assembly. The section shown in Figure 4 is one of sixteen which join together by bolting and seam welding to form the complete torus enclosure. The entire vacuum vessel is supported from below the reactor and is anchored to the lower (bottom) shield blocks. The top plates of each vacuum vessel section are removable and provide the access for all operations internal to the vessel. This large, relatively unobstructed aperture provides for simple remote operated tools and machines to be used in removal and replacement operations. All liners, blanket blocks and other internals are removed through the top closure with simple hoists and guide frames. Each vacuum vessel plate is fabricated with appropriately dispersed, gun-bored coolant channels that terminate with connections to the coolant manifold system. The blanket assembly is comprised of stainless steel blocks with transverse gun-bored coolant channels. There are a total of 8 blocks per vacuum vessel section (supported by the vacuum vessel) which are installed and removed through the upper vacuum vessel closure. The EPR power conversion system incorporates a dual cycle in which an indirect pressurized water system is coupled to a direct cycle superheated steam system. Pressurized water from the first wall assembly and the inner and outer blanket regions delivers thermal energy to an evaporator operating at 340°C and 13.8 MPa (2000 psi) and utilizing much of the same technology and conditions as are presently employed in pressurized water reactors (PWRs). The steam generated in the evaporator is fed to the upper and lower (superheater) blanket blocks where it is heated to 410°C at \sim 8.6 MPa (1250 psi). This steam is fed directly to the turbo-generator in a fashion comparable to boiling water reactors (BWRs) and results in an overall cycle efficiency of \sim 39%. Thermomechanical analyses [21] of the blanket blocks have shown that pressurized water, helium and steam would all be satisfactory coolants for nearterm operation reactors. By properly grading the length and size distribution of the coolant channels in the blanket block, it is possible to achieve realistic performance parameters (in terms of present day technology) for each of these coolants and to maintain stress levels within the blanket blocks at values that correspond to a strain of less than 0.2%. Because of the large thermal inertia of the blanket blocks, the cyclic strain variation is insignificant during normal reactor operation. The overall unconstrained thermal deformation of each block is $\sim 0.6\%$ of the room-temperature dimensions with the blocks tending to become convex toward the plasma. Blanket coolant temperature drops of < 1° C/s are experienced during the dwell time. A high-performance water-cooled stainless steel panel, which is attached to the plasma side of each blanket block, serves as the first wall for the reference design. These coolant panels are designed to accept the high surface heating (equivalent to ~ 25% of the neutron wall load) produced by particle transport and electromagnetic radiation from the plasma. The plasma-side surfaces of the panel walls are coated with a low-Z material, e.g., Be, BeO, or B4C, to control the influx of high-Z transition-metal impurities into the plasma from the steel panels. Cyclic thermal stresses in the coolant panel are minimized by restricting the plasma-side panel wall to thicknesses < 0.25 cm. Calculations [22] of the thermal response of the first wall during off-normal operation indicate that the panel wall will withstand several plasma dumps if the plasma energy is evenly distributed over \geq 10% of the wall (for a plasma with a nominal 1 MW/m² neutron wall load). A plasma dump of this type will vaporize or ablate a 5-20 μm layer of the coating, depending on the material, from the wall. Much of the vaporized material is expected to redeposit on the wall during cooling after the dump. The frequency with which a 200-um thick coating would have to be replaced would be determined by the uniformity of the redeposition and the probability of dumps occurring on the same area of the wall. The severe constraints on space in the high field regions of small-size reactors has been resolved for the EPR by segmenting the bulk shield into inner and outer regions that employ different shield materials. In all, there are 12 shield blocks per vacuum vessel section. All of the blanket and bulk shield blocks are electrically insulated from one another to provide the required [2] disruption of eddy currents generated by the pulsed magnetic fields. The inner blanket/shield design evolved from an extensive parametric study [23,24] including radiation effects, local nuclear heating and refrigeration power requirements in the superconducting TF magnets. Based on this study: (1) the inner shield composition is an optimized combination of stainless steel and boron carbide, and (2) the inner blanket/shield thickness is set at 0.9 m. The TF coils would be annealed at the end of each 1 MW-yr/m² irradiation period with the maximum radiation induced resistivity in the copper stabilizer reaching 4.2 x 10^{-8} Ω -cm and with only Ω 3% change in the critical current density of NbTi. The maximum radiation dose to the epoxy insulators inside the conductor is 4 x 10^9 rad after 4 MW-yr/m² of operation. Effective shielding is provided for all penetrations that have to be accommodated in the blanket/bulk shield. The neutral beam ducts are surrounded by an 0.8-m thick local penetration shield as they emerge from the bulk shield. This penetration shield extends to the beam injectors and is tapered off in proportion with the radiation attenuation. Movable shield plugs are used where necessary to block penetrations that need not be open during the plasma burn. #### 9. MATERIALS It appears at this time that there are no materials limitations that preclude the viability of the EPR design. This is in part due to the fact that a conscious effort has been made in the design to remove the vacuum vessel from the high damage region and to allow remote repairs to be made in a straightfoward manner. The relative amounts of damage expected in the different structural components are presented in Table 9. The most vulnerable component in the EPR is the first wall cooling panel which is subjected to the highest fatigue loading while enduring the most intense radiation damage. In predicting the lifetime of this component, swelling, ductility loss and fatigue were considered. Assuming an allowable swelling of 10% and a reduction of ductility to 0.5% uniform strain, the region of the wall at temperatures in excess of 400°C would be limited to approximately 4 MW-yr/m² # Table 9. Major Design Concepts and Parameters for the EPR First Wall/Blanket/Shield System ## First Wall Type Cooling panel Thickness 1-2 cm Material 316 SS, BeO coated Maximum temperature 450°C Neutron damage 11 dpa/(MW-yr/ m^2) Helium generation 208 appm/(MW-yr/ m^2) Hydrogen generation 512 appm/(MW-yr/m²) 7.6 W/cm³ Nuclear heating Neutron Wall Load $0.7 \, \text{MW/m}^2$ ## **Blanket** Type stacked rectangular slabs Material 316 SS Thickness 0.2 m Coolants pressurized H₂O/steam Maximum temperature 550°C Maximum nuclear heating 6.2 W/cm³ Weight ~ 700 Mg #### Vacuum Vessel modular sections, welded plate Type outside blanket Location 16 Number of sections Number of plates/section 12 316 SS Material Dimensions 0.07 m Thickness 5.4 m Vertical bore 3.1 m Horizontal bore 22.5° Section semiangle 550°C Maximum temperature pressurized H20 Coolant gun-bored channels Coolant geometry Weight Heating Rate ∿ 260 Mg 1.0 W/cm³ ## Bulk Shield Material inner 304 SS, B₄C outer B, C, Pb-mortar, 304 SS, Al Thickness Maximum nuclear heating 0.55 W/cm³ of service. Thus, based on these considerations at the nominal EPR wall loading of 0.7 MW/m² and plant factor of 50%, the first wall coolant panels would require replacement every 11.4 years. Defining the lifetime of the regions at temperatures near 300°C is more difficult, as considerably less information is available. The two properties that need better definition at this irradiation temperature are ductility and fatigue. The design limit of 0.5% uniform ductility is based upon fission reactor data. There are several factors that could cause a higher limit to ultimately be set for EPR. A more conservative limit of 1% ductility would correspond to 2.5 MW-yr/m², which would require wall replacement every 7.8 years. A fatigue analysis of the front coolant panels indicates that if the irradiated properties are at least the same as are currently assumed by the ASME code for 316 stainless steel than the lifetime of this component will be limited to 5 years. There are several other areas of concern relating to the ability of different components to perform for long periods in the EPR environment. More experimental results are needed in each of the following areas: (1) Fusion welds lead to compositional and microstructural variations that could have important effects on the resistance of austenitic stainless steels to radiation damage. (2) The radiation damage of high temperature inorganic insulators used a circuit breaker in the first wall. Existing information does indicate that the yttria is stable to at least 2 MW-yr/m², or 6.25 years of EPR service. (3) Commonly used organic cryogenic insulators in the superconducting magnets may be limited to $\sim 10^9$ rads of exposure, which dictates the use of a thicker than otherwise optimum blanket and shield. (4) The development of a low-Z first-wall coating that either is long-lived or can be easily replaced. Considerations of the potential materials limitations for the EPR high-lights the need for the fusion program for a large capacity test facility. The EPR could fulfill this function, as several million cubic centimeters of test volume could be made available for use. At a wall loading of 1 MW/m² and a 50% plant factor, quantities of test specimens sufficient to statistically document the response of a wide variety of materials to a fusion environment could be exposed at the rate of about 6 dpa per year. The potential for higher wall loadings is included in the current design. It is therefore reasonable that the EPR be used as an instrumented materials test facility. ^{*} The maximum wall load is 1.3 MW/m², but the average wall load over the burn pulse is 0.7 MW/m^2 . #### 10. TRITIUM SYSTEMS The technical basis for the design of the EPR tritium handling systems has been described in previous publications [2,10,25,26]. In essence, these systems must provide for: (1) recycle and processing of the plasma exhaust, (2) recovery and consolidation of tritiated wastes, and (3) emergency air handling and detritiation of the reactor building and other major facility enclosures. A key attribute of the design is provision for multiple levels of containment around all components and hardware that contact sizeable quantities of tritium. Unburned DT fuel plus impurities collected by the torus evacuation system are transferred to a consolidation manifold. The gas mixture is then compressed to 0.1 MPa by a series of oil-free metal bellows pumps. The fuel is purified by trapping the condensible impurities at 30°K. The trapped impurities are processed to recover residual tritium by hot gettering or by a series of cryochemical separations [26]. Helium is removed by a cryogenic stripping column. The purified fuel is isotopically enriched by a cryogenic distillation cascade, [25] then prepared for delivery to the torus as ambient gas, frozen pellets or neutral beams. Every effort is made to minimize the likelihood and consequences of leaks. The tritium handling components and hardware are enclosed in dry gloveboxes or are jacketed in pipe casings. Further, the tritium processing components and the emergency air detritiation system are located in a separate, reinforced containment building. The jacketing pipes and gloveboxes are purged with an inert gas stream which is processed by a tritium waste treatment system of the type described in Reference 26. The total tritium inventory is ~ 1300 g. Of this amount, the quantity (~ 130 g) that is present in the vacuum pumps and the fuel preparation units during normal operation could conceivably be released to the facility buildings (volume = 6 x 10^4 m³). Should that quantity be accidentally released to the building, the 50 m³/s emergency cleanup system would take about 50 hours to reduce the ambient tritium levels to recommended radiation control guidelines of 5 μ Ci/m³. A 1-cm thick steel membrane inhibits tritium escape through the walls of the containment building, in the event of a leak. The principal parameters which characterize the tritium and vacuum systems are given in Table 10. Table 10. Tritium Facility and Vacuum Parameters | Toroidal Vacuum System | | | | | |--|------------------|-----------------------|----------|----------| | Volume (m ³) Past-burn gas load (Pa-mathemathemathemathemathemathemathemathe | ı ³) | . 1 | | | | Tritium Inventory | | | • | | | Storage (30 days) (g) Fuel preparation (g) Vacuum pumps (g) Total (g) | | 119
11
2
134 | .0
20 | | | Mass Flow Rates | D | <u>T</u> | He | <u>H</u> | | Cold gas load (g/day) | 58 | 126 | | - | | Fuel makeup (g/day) | 56 | 121 | • | | | Neutral beam injection | | | | | | (g/day) | 51 | | | • | | Exhaust (g/day) | 138 | 207 | 53 | 2 | | Neutral beam exhaust | | | | | #### 11. REACTOR FACILITY 99 3 (g/day) The overall reactor facility consists of the reactor building and seven major support buildings and structures. The reactor support facilities are located in an attached building adjacent to the main reactor cargo doors. This building houses the repair/maintenance hot cell, the mockup/test equipment and other special facilities for initial winding and cryostat preparation of the TF coils. Adequate cranes and access to equipment are provided for handling all reactor components prior to their installation. A third large structure also located adjacent to the reactor building houses the reactor magnet power supplies and compressors for the cryogenic units. Power leads are run through seals in the reactor containment to the various reactor components. An energy storage ring, remotely located, is part of the reactor power distribution system. The facility has a tritium facility for storage, preparation and reprocessing of reactor fuel and cleanup of tritium contamination. A 120-MWe power plant is a major facility feature. Other facility structures include an office building housing the control center, a waste heat cooling tower array capable of handling 315 MWt and a 120 MWe power substation. #### 12. COSTS AND SCHEDULE A cost estimate for EPR is given in Table 11. The construction time from the beginning of site construction to initial startup would be 51 months. Several years of design would precede the beginning of site construction. Table 11. Plant Capital Investment Direct Cost Estimate (in millions of 1977 dollars) | 1.0 | Structures & Site Facilities | \$ 46.0 | |-------------------|------------------------------|---------| | 2.0 | Reactor | 160.6 | | 3.0 | Reactor Plant Facilities | 144.9 | | 4.0 | Turbine Plant | 20.1 | | | TOTAL | \$371.6 | | Engineering (20%) | | 74.3 | | Contingency (25%) | | 92.9 | | GRAND TOTAL | | \$538.8 | #### REFERENCES - [1] STACEY, W. M., BAKER, C. C., ROBERTS, M., "Tokamak Experimental Power Reactor Studies," Presented at the Sixth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, October 6-13, 1976, Berchtesgaden, Federal Republic of Germany; also, ERDA-76/139. - [2] STACEY, W. M., et al., "Tokamak Experimental Power Reactor Conceptual Design," Argonne National Laboratory, ANL/CTR-76-3 (August, 1976); and STACEY, W. M., et al., "Tokamak Experimental Power Reactor Studies," Argonne National Laboratory, ANL/CTR-75-2 (1975). - [3] "Experimental Power Reactor Conceptual Design Study," General Atomic Company, GA-A14000 (July, 1976); and "Experimental Power Reactor Conceptual Design Study," General Atomic Comapny, GA-A13534 (July, 1975). - [4] "Oak Ridge Tokamak Experimental Power Reactor Study," Oak Ridge National Laboratory, ORNL/TM-5572 through ORNL/TM-5577 (1976); also, ROBERTS, M., BETTIS, E. S., "Oak Ridge Tokamak Experimental Power Reactor Study Reference Design," Oak Ridge National Laboratory, ORNL/TM-5042 (1975). - [5] CALLEN, J. D., DORY, R. A., "MHD Equilibria in Sharply Curved Axisymmetric Devices," Phys. Fluids, 5, 1523 (1972). - [6] PENG, Y-K., et al., "Magnetohydrodynamic Equilibria and Local Stability of Axisymmatic Tokamak Plasmas," Oak Ridge National Laboratory, ORNL/TM-5267 (1976). - [7] DORY, R. A., PENG, Y-K., "High-Pressure, Flux-Conserving Tokamak Equilibria," Oak Ridge National Laboratory, ORNL/TM-5555 (1976). - [8] EVANS, K., Jr., "Magnetohydrodynamic Equilibrium Considerations in High-Beta Tokamaks," Argonne National Laboratory, to be published. - [9] EHST, D., EVANS, Jr., Jr., STACEY, W. M., JR., "Tokamak Fusion Reactor Operation Regimes," Argonne National Laboratory, to be published. - [10] STACEY, W. M., JR., et al., "EPR-77: Revised Design for the Tokamak Experimental Power Reactor," Argonne National Laboratory, ANL/FPP/TM-77 (1977). - [11] GRIMM, R. C., et al., "Computation of the Magnetohydrodynamic Spectrum in Axisymmetric Toroidal Confinement Systems," J. of Comp. Phys., 16, 253 (1976). - [12] STAECY, W. M., JR., et al., "Impurity Control in Tokamak Reactors," Argonne National Laboratory, ANL/FPP/TM-91 (1977). - [13] PETERSON, H. A., et al., "Superconducting Inductor-Convertor Units for Pulsed Power Loads," Proceedings of the International Conference on Energy Storage, Conversion and Switching, November, 1972, Italy, Plenum Press, New York (1976). - [14] KUSTOM, R. L., et al., "The Use of Multiphase Inductor-Convertor Bridges as Actively Controlled Power Supplies for Tokamak EF Coils," Argonne National Laboratory, ANL/FPP/TM-78, to be published. - [15] PRAEG, W. F., "A Time-Delay Transformer for Overcurrent Protection," Record of the IEEE Power Electronics Specialists Conference, Cleveland, Ohio, June 8-10, 1976, p. 297-302. - [16] PRAEG, W. F., "A Power Supply for High Voltage Neutral Beam Injectors," Argonne National Laboratory, ANL/CTR/TM-67 (April 19, 1976). - [17] PRAEG, W. F., "Protection of Neutral Beam Accelerator Electrodes from Arc Discharges," Proceedings of the Seventh Symposium on Engineering Problems of Fusion Research, Knoxville, Tennessee (October 25-28, 1977), to be published. - [18] TURNER, L., WANG, S., SMITH, R., "Superconducting Magnet Systems for the ANL EPR Design," to be published as part of the Proceedings of the Seventh Symposium on Engineering Problems of Fusion Research, October, 1977. - [19] STEVENS, H. C., et al., "Tokamak Experimental Power Reactor Primary Energy Conversion System," Proceedings of the Second ANS Topical Meeting on the Technology of Controlled Nuclear Fusion, CONF-760935-P4 (1976), p. 1551. - [20] STEVENS, H. C., et al., "Mechanical Design and Analysis for an EPR First Wall/Blanket/Shield System,", Proceedings of the Seventh Symposium on Engineering Problems of Fusion Research, Knoxville, Tennessee, (October 25-28, 1977). - [21] MISRA, B., STEVENS, H. C., MARONI, V. A., "Thermal Hydraulic and Power Cycle Analysis for Near-Term Fusion Reactor Blanket Designs," Transactions of the American Nuclear Society 1977 Winter Meeting, November 22 December 2, 1977, San Francisco, California. - [22] SMITH, D. L., CHARAK, I., "Thermal Response of Tokamak Fusion Reactor First Walls During Cyclic Plasma Burns," Proceedings of the Seventh Symposium on Engineering Problems of Fusion Research, Knoxville, Tennessee, (October 25-28, 1977). - [23] YOUNGDAHL, C. K., MISRA, B., "Thermal Mechanical Design of Near-Term Fusion Reactor Blanket Blocks," Transactions of the American Nuclear Society 1977 Winter Meeting, November 22 - December 2, 1977, San Francisco, California. - [24] ABDOU, M. A., "Radiation Considerations for Superconducting Fusion Magnets," Argonne National Laboratory, ANL/FPP/TM-92 (1976). - [25] MISRA, B., MARONI, V. A., "Isotopic Enrichment of Plasma Exhausts from Controlled Thermonuclear Reactors by Cryogenic Distillation," Nuclear Technology, (in press). - [26] ANDERSON, J. L., SHERMAN, R. H., "Tritium Systems Test Assembly: Design for Major Tritium Device Fabrication Review," Los Alamos Scientific Laboratory, LA-6855-P (1977). Figure 1. Vertical Elevation Showing Torus and Neutral Beam Design. Figure 2, Net Energy Flow in Reference Burn Cycle. Figure 3. Net Electrical Power Production as a Function of β_t , Toroidal Magnetic Field and Thermal Conversion Efficiency. Figure 4. Design of Segmented Blanket, Vacuum Vessel and Shield Components.