BLANKET/SHIELD ENGINEERING LIMITS BASED ON CONVENTIONAL DESIGN STUDIES

MOHAMED A. ABDOU UCLA

MFAC PANEL X MEETING JANUARY 30, 1985 UCLA

CONTRIBUTORS

P. GIERSZEWSKI
K. TAGHAVI
M. TILLACK
A. MAJID

CONVENTIONAL DESIGN STUDIES

UWMAK SERIES

STARFIRE, ANL/DEMO

BCSS

MARS

PARTS OF FINESSE

OUTLINE

- RADIATION SHIELD
- BLANKET/FIRST WALL
 - THERMOMECHANICAL AND MATERIALS CONSTRAINTS
 - TRITIUM BREEDING
- MASS UTILIZATION
- BLANKET EXTERNAL TO COILS

INTRODUCTORY POINTS

- KEY DEVICE PARAMETERS THAT AFFECT FIRST WALL/BLANKET/SHIELD:
 - Neutron wall load
 Most neutronics parameters are approximately linear with neutron wall load (flux, heating, activation burnup, etc.)
 - SURFACE HEAT LOAD AT FIRST WALL
 - PLASMA PARTICLE FLUX, ENERGY AT FIRST WALL
 - MAGNETIC FIELD
- THERE IS A STRONG CORRELATION BETWEEN FIRST WALL BLANKET AND IMPURITY CONTROL SYSTEM CONDITIONS AND DESIGNS:
 - α -power is shared between first wall and "Limiter/Divertor" type
 - COMPATIBILITY OF MATERIAL CHOICE, E.G., LITHIUM IN BLANKET PRACTICALLY RULES OUT WATER IN LIMITER/DIVERTOR
 - "BLANKET/SHIELD" AND "IN-VESSEL COMPONENT" CONSTRAINTS SHOULD BE VIEWED TOGETHER

RADIATION SHIELDING

BULK SHIELD

• FOR TYPICAL OPTIMIZED SHIELD:

Increasing P_{NW} by a factor of 10 requires increasing $\Delta_{\mbox{\footnotesize{BS}}}$ by 15 cm (or 6.5 cm for a factor of 2 in $P_{\mbox{\footnotesize{NW}}})$

• IN TYPICAL TOKAMAKS $(R \sim 5-6 \text{ m})$:

A 1 cm increase in Δ_{BS}^{I} reduces power by 1%

ullet The increase in Δ_{BS} at high P_{NW} is an added penalty:

It does <u>not</u> by itself eliminate the advantage of higher P_{NW} . It only reduces the magnitude of the advantage (unless a technological constraint is reached, e.g., B_{MAX}).

PENETRATION SHIELD

- AFFECTED BY PNW
- However, the key factors are the characteristics of penetrations (e.g., size, shape, Location)

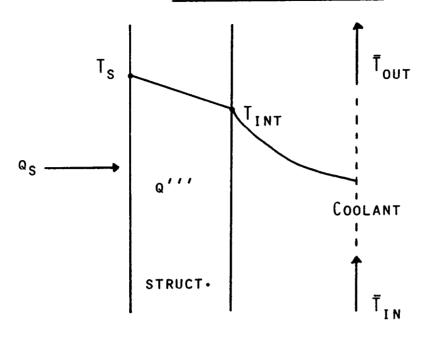
DEPENDENCE OF BLANKET DESIGN ON POWER DENSITY

- CONCLUSION FROM PREVIOUS STUDIES
 - THE <u>upper end</u> of "optimum" parameters are:

 $P_{NW} \sim 5 \text{ MW/m}^2$ $Q_S \sim 1 \text{ MW/m}^2$ First wall erosion < 1 mm/y

- REASONS:

LIMITATIONS ON ABILITY TO PRODUCE
LIMITATIONS ON ABILITY TO USE


- THIS PRESENTATION
 - EXPLANATION OF **USE** LIMITATIONS
 - PRELIMINARY THOUGHTS ON HOW TO OVERCOME SOME OF THE LIMITATIONS

BLANKET EXAMPLES

SELF-COOLED LIQUID METALS

SOLID BREEDERS

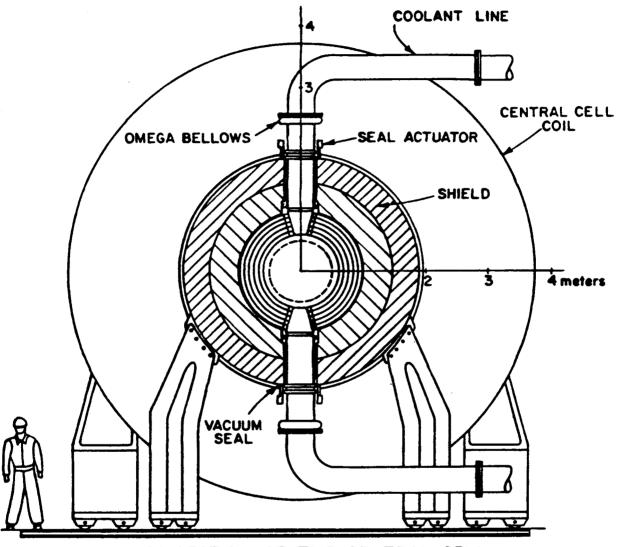
LIQUID METAL BLANKETS

$$\overline{T}_{IN} > T_{IN}^{MIN} \qquad \qquad \text{(MELTING, PINCH POINTS)}$$

$$\overline{T}_{OUT} > T_{OUT}^{MIN} \qquad \qquad \text{(THERMAL EFFICIENCY)}$$

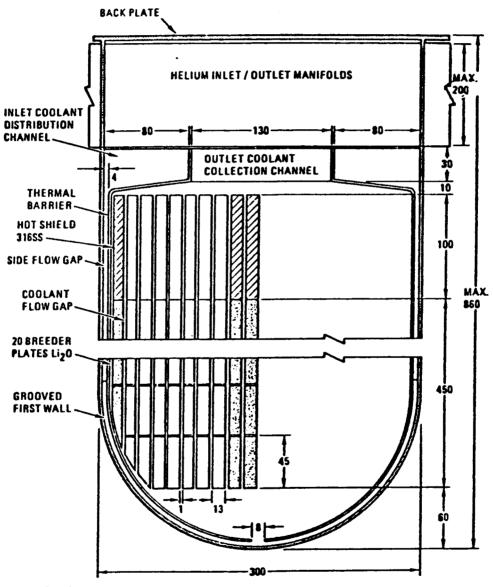
$$T_{INT} = \overline{T}_{OUT} + \Delta T_{FILM} < T_{INT}^{MAX} \qquad \qquad \text{(COMPATIBILITY)}$$

$$T_{S} = \overline{T}_{OUT} + \Delta T_{FILM} + \Delta T_{S} < T_{S}^{MAX} \qquad \qquad \text{(STRUCTURE LIMIT)}$$

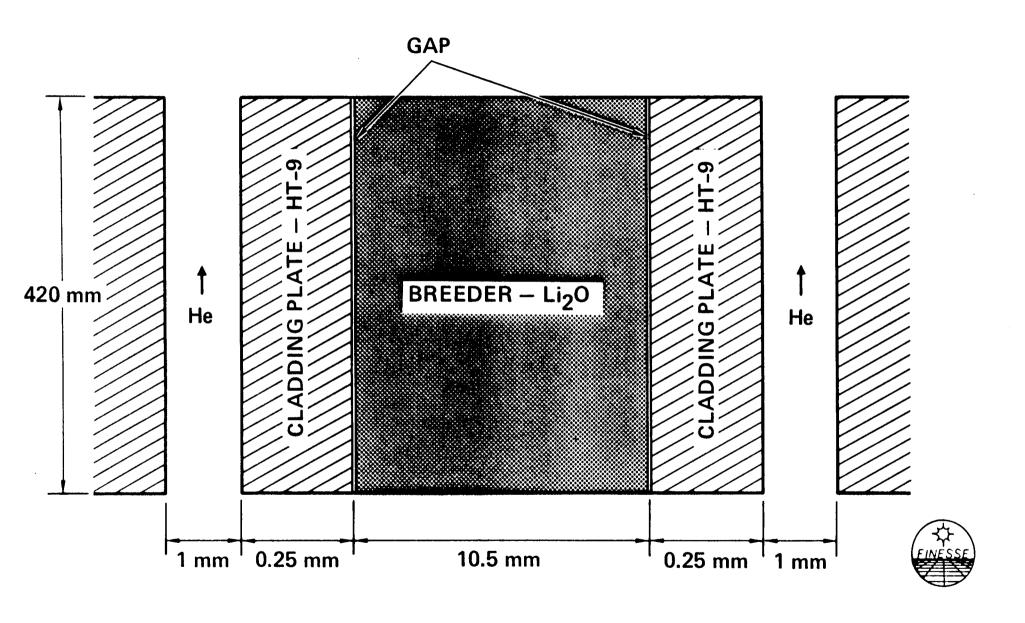

MHD

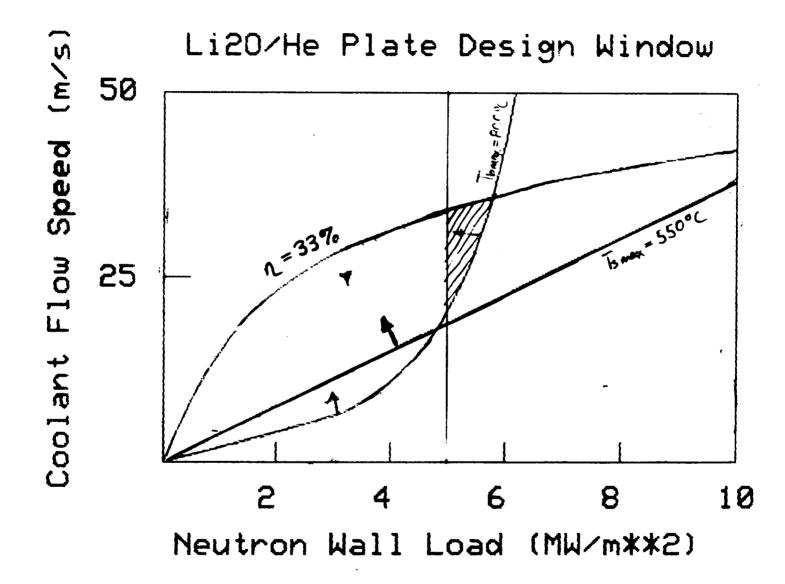
$$\Delta P \sim \ell V B^2 \sigma_W T_W / A$$

$$\ell^2 B^2 \sigma_W \left(\frac{Q_S + Q'''T}{\rho C_D \Delta_R \Delta T_C} \right) < S_{ALLOW} \qquad \text{(FEASIBILITY CONDITION)}$$

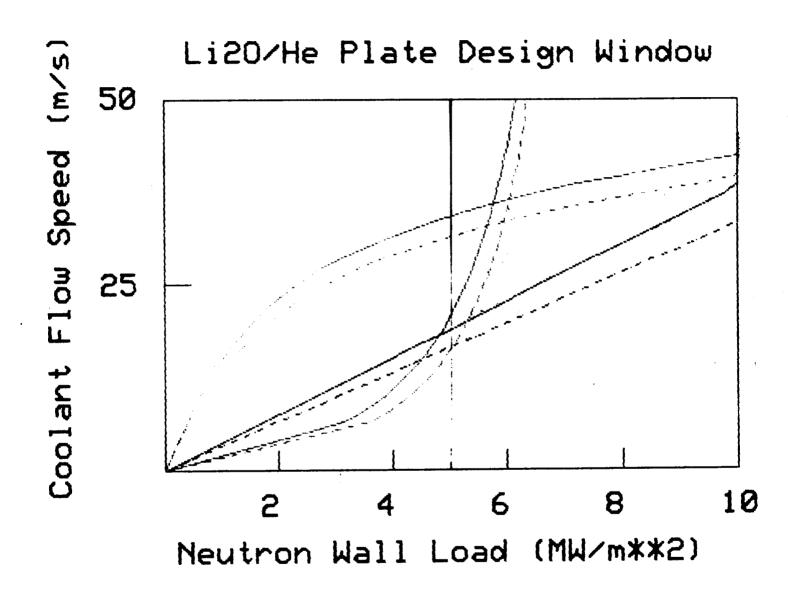

TOROIDAL FIRST WALL FLOW SECOND WALL POLOIDAL MANIFOLD SECOND WALL ORIFICE-TOROIDAL CHANNEL

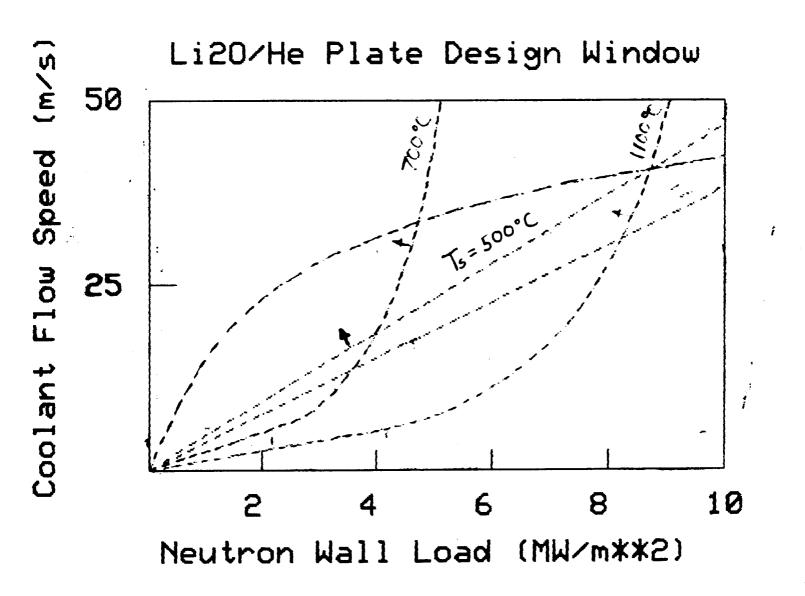
POLOIDAL BLANKET/MANIFOLD FLOW


CROSS SECTION OF TMR CENTRAL CELL


BLANKET MODULE CROSS SECTION (AN EXAMPLE)

ALL DIMENSIONS IN mm


BLANKET MODEL



REFERENCE DESIGN WINDOW

No Surface Heat Flux Effects

DESIGN WINDOW CHANGE WITH NO SURPACE HEAT FLIX

TRITIUM BREEDING RATIO (TBR)

 $T_R = REQUIRED TBR$

 $T_A = Achievable TBR$

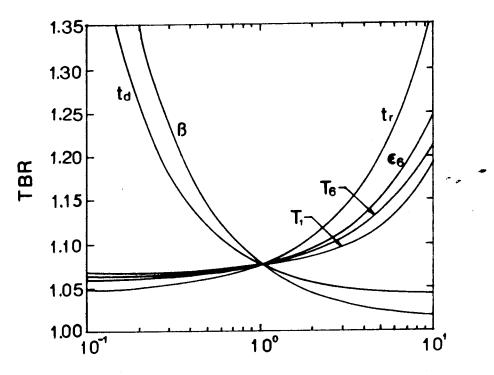
Fuel Self Sufficiency: $T_A > T_R$

REQUIRED TBR

- T_R DEPENDS ON REACTOR PLASMA, ENGINEERING PARAMETERS
- Examples of DESIGN LIMITATIONS:

TRITIUM FRACTIONAL BURNUP IN PLASMA > 5% BLANKET TRITIUM INVENTORY < 5 KG

ACHIEVABLE TBR


- PRESENT CONCEPTS ARE LIMITED IN THE MAXIMUM ACHIEVABLE TBR
- Examples of Design Limitations:

Amount of structure Blanket coverage

IMPACT OF HIGH POWER DENSITY ON TBR

- WILL INCREASE THE DIFFICULTY OF T_A
- CAN BE ACCEPTABLE IF IT RESULTS IN LOW T_{R}

DEPENDENCE OF <u>REQUIRED</u> TBR ON PLASMA, ENGINEERING PARAMETERS

Reference Case Variation

REFERENCE CASE

$$\beta = 5\%$$

$$T_1 = 10 D$$

$$T_R = 2 D$$

$$T_{D} = 5 \text{ y}$$
 $T_{6} = 1 \text{ p}$
 $\epsilon_{6} = 0.1\%$

NOTATION

β = TRITIUM FRACTIONAL BURNUP IN PLASMA

 $T_D = DOUBLING TIME$

T1 = TRITIUM MEAN RESIDENCE TIME IN BLANKET

T6 = TRITIUM MEAN RESIDENCE TIME IN PLASMA EXHAUST PROCESSING

 T_R = NUMBER OF DAYS OF TRITIUM RESERVE

 ε_6 = TRITIUM EXTRACTION INEFFICIENCY IN PLASMA EXHAUST PROCESSING

Table 2.X2 Results of Tritium Breeding Requirements,
Potential and Uncertainties for Candidate Blanket Concepts in Tokamaks

Concept		T _c	1+G _o	$\Delta_{\rm G}^2$	Δ _S ²	Δ ² _p	$\sum \Delta_{\mathbf{i}}^2$	$T_{c}^{-} (1+G_{o}) - \sqrt{\sum_{i} \Delta_{i}^{2}}$
A	LiAlO ₂ /DS/HT-9/Be	1.24	1.073	•05	.0094	•0009	.0603	0779
В	L1/L1/HT-9	-	-	-	-	_	-	-
C.	LiPb/LiPb/V	-	-	-	-	_	-	-
D	Li/Li/V	1.28	1.068	•05	.0094	.0041	.1635	192
E	Li ₂ 0/He/He/HT-9	1.11	1.067	•05	.0094	.0029	.1623	360
F	$LiAlO_2/He/HT-9/Be$	1.04	1.067	•05	.0094	.0009	.1603	427
G	Li/He/HT-9	1.16	1.068	•05	.0094	.0030	.1624	311
Н	Flibe/He/HT-9/Be	1.17	1.067	•05	.0094	.0017	.1611	298
I	LiA10 ₂ /H ₂ O/HT-/Be	1.16	1.071	•05	.0094	•0009	.1603	311

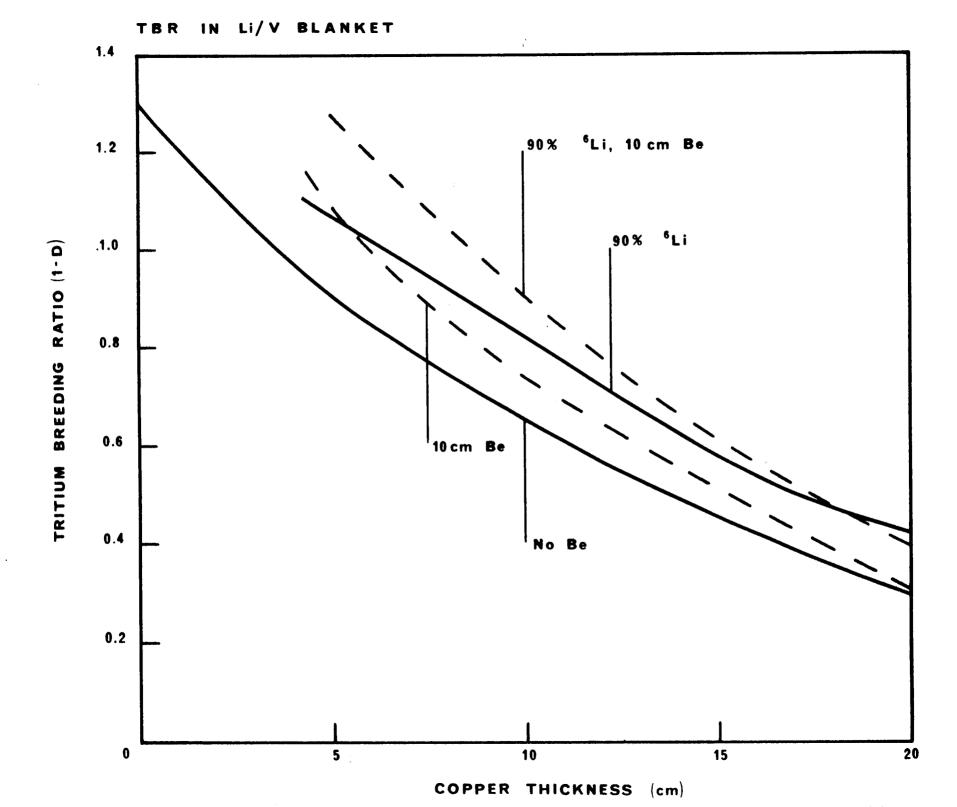
Table 2.X3 Results of Tritium Breeding Requirements,
Potential and Uncertainties for Candidate Blanket Concepts in Mirrors

Concept	T _c	1+G _o	Δ _G ²	Δ _S ²	Δ ² _p	ΣΔ ₁ ²	$T_{c}^{-(1+G_{o})-\sqrt{\sum \Delta_{i}^{2}}}$
LiAlO ₂ /DS/HT-9/Be							
Li/Li/HT-9	1.14	1.068	•05	.0094	.0035	.1629	332
LiPb/LiPb/V	1.18	1.067	.05	.0094	.0024	.1618	289
L1/L1/V	1.19	1.068	.05	.0094	.0041	.1635	282
L1 ₂ 0/He/HT-9	1.14	1.067	•05	.0094	.0029	.1623	330
LiAlO ₂ /He/HT-9/Be	1.16	1.067	•05	.0094	.0009	.1603	307
Li/He/HT-9	1.17	1.067	•05	.0094	.0030	.1624	300
Flibe/He/HT-9/Be	1.29	1.067	•05	.0094	.0017	.1611	178
LiA10 ₂ /H ₂ 0/HT-9/Be	1.22	1.070	.05	.0094	.0009	.1603	250

BLANKET/SHIELD AND MASS UTILIZATION

BLANKET

- \bullet Present blanket concepts have typical blanket thickness: $\Delta_R \sim 70\text{--}100~\text{cm}$
- There are approaches to reduce Δ_B to ~ 20 cm (improve blanket mass utilization by a factor of 3-5)


EXAMPLE

5 cm Be, 10 cm enriched Li, 5 cm SS (Higher mass utilization, Higher energy multiplication)

- Such concepts were put aside in the past because of difficult engineering problems (heat removal, material limits, etc.) at $P_{\text{NW}} = 5 \text{ MW/m}^2$
- Such concepts should be revisited (for tokamaks and mirrors in particular)

SHIELD

- LARGEST VOLUME AND MASS
- Can reduce thickness by use of very heavy materials (tungsten, depleted uranium?)
- REDUCING MASS OF SHIELD IS UNLIKELY EXCEPT BY REDUCING THE SURFACE AREA (NEUTRONICS/PHOTONICS CHARACTERISTICS)
- REDUCING SHIELD THICKNESS MAY PERMIT REDUCING MASS OF OTHER COMPONENTS (MAGNETS, HEAT TRANSPORT PIPING, ETC.)

CONCLUSIONS

- \bullet Previous "conventional" design studies have focused on neutron wall loads (P_Nw) of < 5 MW/m^2
- Design of viable and attractive blanket/first wall is difficult for tokamaks at $P_{\rm NW}=5~{\rm MW/m^2}$ (less difficult for mirrors because of lower surface heat flux, lower wall erosion)
- PRIMARY ISSUES/CONSTRAINTS: SOLID BREEDERS
 - TRITIUM BREEDING AND INVENTORY
 MINIMUM AND MAXIMUM BREEDER TEMPERATURES
 - STRUCTURE/COOLANT

 COMPATIBILITY OF COOLANT/STRUCTURE (E.G., HE/V)

 MAXIMUM STRUCTURE TEMPERATURE
 - Breeder/clad mechanical interaction
 - OTHERS

THE COMPLEXITY OF THESE ISSUES WILL INCREASE WITH HIGH POWER DENSITY. SUCCESS DOES NOT SEEM LIKELY.

CONCLUSIONS (CONTD.)

- PRIMARY ISSUES/CONSTRAINTS: LIQUID METALS
 - MHD PRESSURE DROP (x^2B^2)
 - Compatability corrosion (Liquid metal/structure interface T)
 - STRUCTURE TEMPERATURE, ALLOWABLE STRESS
 - Tritium breeding (IN SOME CASES)
 - OTHERS
 - Some of these issues will be <u>adversely</u> affected by high power density
 - OTHERS MAY BENEFIT DEPENDING ON SYSTEM PARAMETERS

(CONTD.)

- NEUTRON WALL LOADS IN THE RANGE OF 5-10 MW/m² MAY BE POSSIBLE BY A <u>COMBINATION</u> OF IMPROVED REACTOR SYSTEM FEATURES AND AGGRESSIVE BLANKET ENGINEERING R&D
- Promising directions for achieving viable systems at P_{NW} 5-10 MW/m²:
 - EMPHASIZE LIQUID METALS
 - REDUCE SURFACE HEAT LOAD AND EROSION AT FIRST WALL TO MINIMUM
 - FIND SOLUTIONS TO IMPURITY CONTROL:

 VERY LOW PLASMA EDGE TEMPERATURE

 THROW AWAY HEAT

 DIRECT ENERGY CONVERSION (IMPROVES 7)
 - CONSIDER A SEPARATE FIRST WALL, FIND A SUITABLE COOLANT
 - KEEP MAGNECTIC FIELD LOW
 - SYSTEM GEOMETRY SHOULD ALLOW <u>SHORT PATH LENGTH</u> FOR LIQUID METAL FLOW
 - Examine the possibility of electric insulators in the blanket
- Neutron wall loads > 10 MW/m² are <u>beyond</u> the credible extrapolation range

(CONTD.)

• THERE ARE IDEAS FOR IMPROVING MASS UTILIZATION FOR BLANKET/ SHIELD OTHER THAN INCREASING NEUTRON WALL LOADS. SUCH IDEAS DESERVE EXPLORATION.

• ATTAINING DT FUEL SELF SUFFICIENCY WITH BLANKET EXTERNAL TO COIL:

Coil Thickness > 10 cm

Impossible

Coil Thickness ~ 5-8 cm

UNLIKELY