# FLIBE WHAT DO WE KNOW?

Dai-Kai- Sze
Zhanhe Wang
Argonne National Laboratory

Presented at the APEX/ALPS meeting.
Albuquerque, New Mexico
July 27-31, 1998



4-15-85 1.1 20

STRULTURE VOLUME FRACTIONS

#### **IMPLICATION**

- Breeding will be a major concern of using flibe for D-T fusion.
- Sufficient breeding can not be assured even with the use of Be.
- Flibe is much more effective than Li or LiPb to protect radiation damage for the structure behind.
- Key work will be to assess the breeding with different Li enrichment, and with different structural material, flibe and Be composition.



#### **TRITIUM**

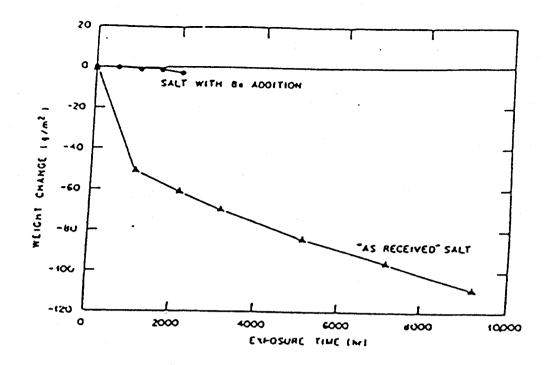
- H<sub>2</sub> is a "metallic like" element.
- Metal does not dissolve in salt.
- Salt (TF) will dissolve in salt.
- Solubility of T<sub>2</sub> in salt is very low, and obey's Henry's law.
- The solubility of TF in the salt is much higher.



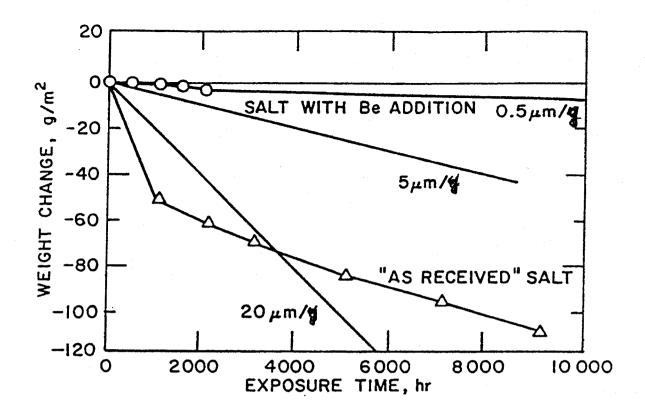
#### **IMPLICATION**

- Tritium recovery to a low inventory is not issue for a flibe blanket.
- Tritium recovery to a low vapor pressure is key issue.
- Tritium containment was a severe problem for the MSBR, which had a very small amount of tritium.
- An intermediate coolant, and surface modification techniques, were developed for tritium containment.
- These methods may not be sufficient to resolve problem here because of the large throughput of the tritium.




#### MATERIAL COMPATIBILITY

- Metallic elements does not dissolve in salt.
- Metallic salt will dissolve in salt.
- For corrosion to occur, the reaction
   M + NF--> MF + N must occur first.
   (M is the structural material and NF is a component in the salt).
- LiF and BeF<sub>2</sub> are two of the most stable fluorides, and will not react with any structural material.
- TF can react with some structural material to form MF.
- i.e. corrosion is not caused by pure flibe, but by the impurities in the salt, including TF.




#### AGf 1000°K (kcal/g-atom of fluorine

| MoF <sub>6</sub> (g) | -50.2         |   |
|----------------------|---------------|---|
| WF <sub>6</sub> (g)  | <b>-56.8</b>  |   |
| NiF <sub>2</sub> (d) | -55.3         | • |
| VF <sub>5</sub> (g)  | <b>-58</b>    |   |
| VF <sub>4</sub> (cr) | -66           |   |
| HF(g)                | -66.2         |   |
| FeF <sub>2</sub> (d) | -66.5         |   |
| NbF <sub>5</sub> (g) | <b>-72.</b> 5 |   |
| CrF <sub>2</sub> (d) | -75.2         |   |
| TaF <sub>5</sub> (g) | -82.2         |   |
| TiF <sub>4</sub> (g) | -85.4         |   |
| Lif(1)               | -125.2        |   |
| BeF <sub>2</sub> (t) | -106.9        |   |



WEIGHT CHANGE VERSUS EXPOSURE TIME FOR TYPE 316 STAINLESS STEEL IN LIF-BEF2 SALT AT THE MAXIMUM LOOP TEMPERATURE OF 650°C-



## RADIOLYSIS AND PYROLYSIS

 No Radiolysis or pyrolysis have been observed in fission environment.



#### **ELECTROLYSIS**

- The induced voltage of flowing flibe across a magnetic field is (velocity) (channel dimension) (magnetic field)
- Based on molten salt tritium recovery experiment, we know the LiF will be decomposed by electrolysis when the potential difference exceeds 2 volt.
- The design of the system has to keep maximum voltage difference below maybe 1.6 V.



#### WHAT IS FLIBE?

- Flibe is the coolant salt used by the MSBR.
- It is an eutectic of LiF and BeF<sub>2</sub>.
- The reason that MSBR selected flibe is the very high thermal and radiation stability.
- There are two mixtures of LiF and BeF<sub>2</sub> considered by MSBR.
- The one with higher melting point (460°C) was the one used by the MSBR because of its lower viscosity.



### FREE F FORMATION

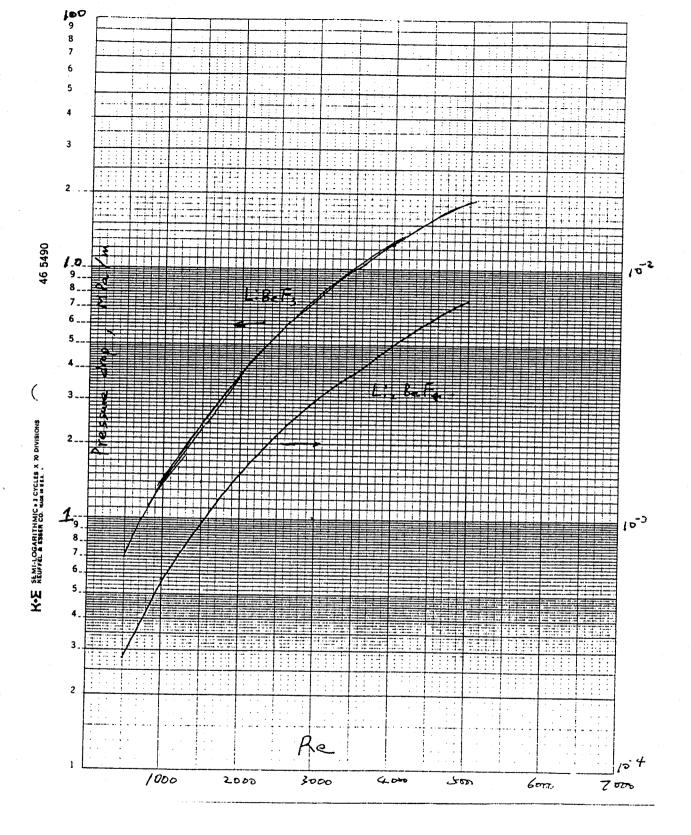
- Transmutation of Be will release free F from BeF<sub>2</sub>.
- The free F release rate is about 600g/ fpd for a 2250 MW fusion power plant.
- Free flourine will cause severe material compatibility problems for all structural materials.
- Redox buffer reaction is a possible way to control F activities.
- MoF<sub>3</sub> <--> MoF<sub>6</sub> is a possible redox buffer reaction. (Redox buffer reaction is to design a chemical reaction process which will remove free F faster than the F will react with the structural material.



#### **IMPLICATIONS**

- Flibe can be controlled either in the reducing form, or in the oxidation form.
- The form of tritium is in the  $T_2$  form if flibe is maintained in the reducing form.
- Due to the low tritium solubility, the tritium partial pressure will be very high, and tritium containment is an issue.
- The form of tritium is TF if flibe is maintained in the oxidation form.
- TF is very corrosive to some structural materials due to the high free energy of formation.
- To balance the containmination of  $T_2$ , and the compatibility issue of TF, is a key R/D issue.




### HEAT TRANSFER CHARACTERISTICS

- The thermal conductivity of flibe is similar to that of water.
- At the same velocity, the heat transfer coefficient and the pressure drop of flibe are worse by about a factor of 2 comparing to water.
- However, the heat transfer DT of flibe can be much higher than that of water, because of the much higher boiling temperature.
- The flibe with low melting temperature is very viscose, and large pressure drop will develope for an acceptable heat transfer.
- Due to the low thermal conductivity, the salt needs to be in the turbulence regime for good heat transfer.



|                            | LI <sub>2</sub> BEF <sub>4</sub><br>(600°C) | . H <sub>2</sub> 0<br>(260°C) |
|----------------------------|---------------------------------------------|-------------------------------|
| 7/0 0-                     |                                             |                               |
| , J/G - °C                 | 2.8                                         | 5.0                           |
| G/cm <sup>3</sup>          | 1.92                                        | 0.79                          |
| CP                         | 7.5                                         | 0.11                          |
| W/cm - °C                  | 0.01                                        | 0.006                         |
| Sp, J/cm <sup>3</sup> - °C | 5.4                                         | 4.0                           |

At same velocity H H<sub>2</sub>O = 2.5 H<sub>salt</sub>  $\Delta P_{\text{H}_2\text{O}} = .5 \Delta P_{\text{salt}}$  for V = 500 cm/sec, D = 1 cm H = 1.5 watt/cm<sup>2</sup> - °C if Q = 100 W/cm<sup>2</sup>,  $\Delta T$  = 67°C



#### MHD EFFECTS

- Flibe has a very low electrical conductivity.
- The MHD pressure drop will be small comparing to the viscose pressure drop.
- Witha modest velocity, the flow will be in the turbulence regime.
- However, it is not certain what impact of MHD will have on the heat transfer.



#### **IMPLICATIONS**

- The low melting temperature flibe is too viscose to be useful for a heat transfer coolant.
- The thermal conductivity of the flibe is too low to be an effective heat transfer medium in the laminar regime.
- If the high melting temperature flibe is used as the coolant, the blanket temperature will be around 600°C.
- Advanced structural material will be required.



### **ENVIRONMENT AND SAFETY**

- Flibe has no safety related chemical reactions with air, water, or concrete.
- Flibe has moderately low short term radioactivity, and very low long term radioactivity.
- Blanket tritium inventory is very low.
- Rated by ESECOM with inherent safety rating between 1 and 2.



# ENVIRONMENT AND SAFETY CONCERNS

- Flibe has Be, and may require additional Be for tritium breeding.
- Be is chemically toxic.
- It is important to asses how to trade off between chemical toxicity and chemical reactivity.
- Tritium permeation is a major concern.
- It is also important to trade off between routine tritium release and accidental tritium release.



## Table 6.12-7 SUITABILITY OF MATERIALS FOR NEAR-SURFACE BURIAL

| WDR<1<br>Class A(a) | 1 < WDR < 5 | WDR > 5  Not suitable for near-surface Burial(c) |  |  |
|---------------------|-------------|--------------------------------------------------|--|--|
|                     | Class C(b)  |                                                  |  |  |
| Be                  | V15Cr5Ti    | нтэ                                              |  |  |
| Li <sub>2</sub> 0   | HodHT9      | PCA                                              |  |  |
| Lithium             | TENELON     | LiA102                                           |  |  |
| FLIBE               |             | 17Li83Pb                                         |  |  |
|                     |             | Nitrate Salt                                     |  |  |

- (a) Requires only packaging to provide physical, mechanical and chemical stability for near-surface burial.
- (b) Will be diluted to Class C by normal mixing with inert and less active materials from reactor during waste packaging. Requires packaging for physical, mechanical and chemical stability for near-surface burial.
- (c) WDR and total quantities of material make reduction to Class C by dilution impractical. Processing is required to remove high activity nuclides to bring the remaining material to Class C for packaging for near-surface burial. The high activity nuclides require at least a "hot" waste facility or perhaps even deep geological burial.

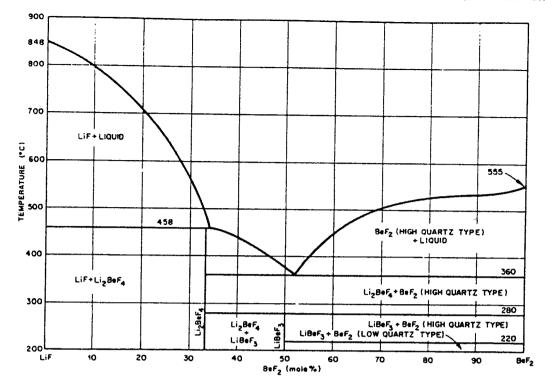



Fig. 1. The system LiF-BeF<sub>2</sub>.

The binary diagrams LiF-UF4<sup>13</sup> and LiF-ThF4<sup>14</sup> 3LiF·ThF4 can incorporate Be<sup>2+</sup> ions in both

Table 6.12-2
RELATIVE RANKINGS OF MATERIALS BY RMR

|                                                                                                   |                                                                                                                                              |                                                                                                      | Time After           | Shutdown                                                              |                                                                                                          |                                                                                                      |                                                                                                                                              |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Material                                                                                          | RMR(mrem/hr)                                                                                                                                 | 1 Da                                                                                                 | RMR(mrem/hr)         | 10 Year<br>Material                                                   | RMR(mrem/hr)                                                                                             | 100 y<br>Material                                                                                    | ears<br>RMR(mrem/hr                                                                                                                          |
| TENELON LiAlO <sub>2</sub> PCA ModHT9 HT9 /CrTi Vitrate Salt Se LiPb i <sub>2</sub> O ithium LIBE | 9.14E+10<br>8.17E+10<br>3.69E+10<br>2.93E+10<br>2.89E+10<br>1.93E+10<br>8.55E+09<br>4.92E+08<br>1.42E+08<br>2.17E+07<br>1.48E+07<br>6.06E+06 | LiAlO <sub>2</sub> VCrTi TENELON PCA ModHT9 HT9 Nitrate salt Be LiPb Lithium Li <sub>2</sub> O FLIBE | 1.67E+08<br>8.85E+07 | PCA Nitrate salt HT9 TENELON MODHT9 LiAlO2 LiPb Be Lithium Li2O FLIBE | 4.41E+07<br>1.39E+07<br>1.11E+07<br>5.36E+06<br>4.16E+06<br>1.26E+06<br>9.13E+04<br>4.44E+04<br>2.79E+04 | LiAlO <sub>2</sub> HT9 PCA LiPb ModHT9 TENELON VCrT; Be Nitrate salt Li <sub>2</sub> O FLIBE Lithium | 2.09E+04<br>2.07E+04<br>9.44E+03<br>9.24E+03<br>4.26E+02<br>4.22E+02<br>1.83E+02<br>4.99E+01<br>2.33E+01<br>1.72E+00<br>2.02E-01<br>1.87E-02 |

#### **Key Problems**

- Can flibe breed?
- Is flibe safe?
- Can a chemical state be defined and verified to satisfy both tritium containment and material compatibility issuse?
- Will MHD significantly reduce the heat transfer?
- What will be the structural material for the blanket? The primary loop? and the HX?
- Can we design a system, and can operate reliabliy, with a tritium recovery effciency of 4 to 6 9's?
- Canwe afford flibe?
- Do we have enough Be?



#### **CONCLUSIONS**

- The reasons for evaluate flibe for APEX/ALPS are
  - Flibe is chemically inert.
  - Flibe may have acceptable neutronics properties.
  - Pure flibe has excellnt compatibility with most structural materials.
  - Flibe offers potantial for a highly compact and efficient power conversion system.
  - Flibe has accetpable heat transfer characteristics.
  - Flibe blanket has a very low pressure.
  - For ALPS/APEX applications, Febased and Ni-based alloys may be possible.



#### VIEW OF PREVIOUS FLIBE CONCERNS

#### T Breeding

- FLIBE was considered sub-marginal on tritium breeding before blanket comparison and selection study (BCSS).
- Shown to be adequate for vanadium alloys and ferritic steel

#### • Be Resource

- Adequate for hundreds of reactors
- No recycling necessary, Be burn up is only 18 kg/y

#### Molten Salt Breeder Reactor Issues

- Fissile fuel reprocessing
- Corrosion due to fission products
- Marginal fissile fuel breeding

Not relevant for fusion applications.

NONE OF THESE CONCERNS REMAINS AS A CRITICAL ISSUE.

## TOPICS TO BE DISSCUSSED

- Neutronics
- Tritium Issues
- Material Compatibility
- Heat Transfer Characteristics
- Environment and Safety

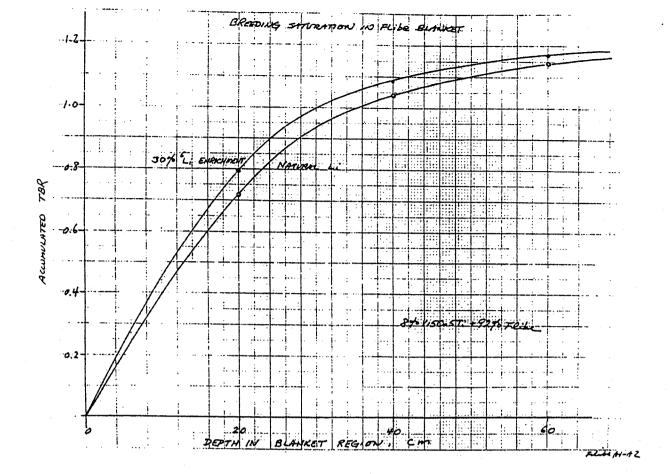


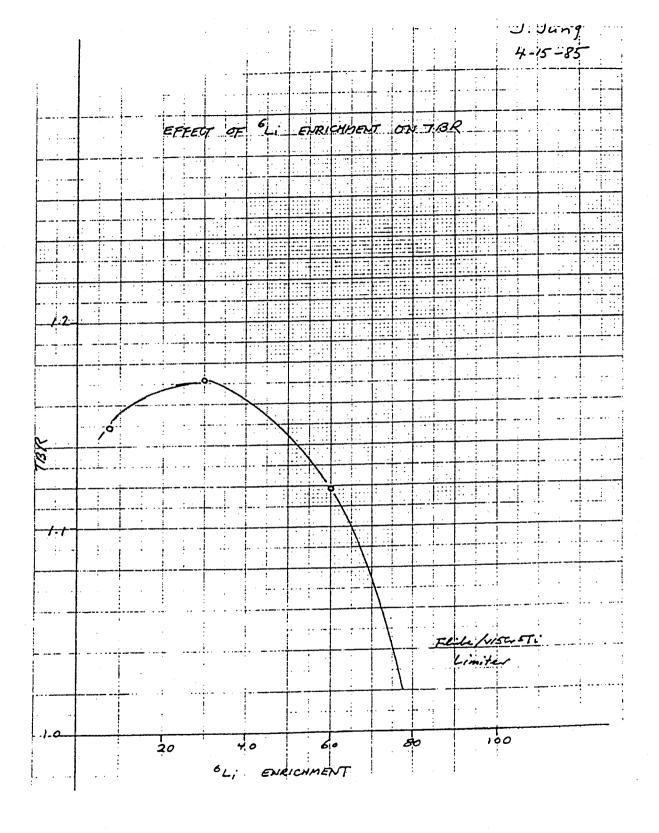
#### **NEUTRONICS**

- Flibe is a marginal breeding material without Be.
- For a blanket with 8% V structure, 30 cm flibe thickness is required to achieve a breeding ratio of 1.0, based on 2-D calculation.
- Flibe is good moderating and shielding material.
- Radiation damage reduces by a factor of 10 for each 24 cm thick flibe layer.



Ref. Design


Fw: 3mm: 100 % V15 C+5Ti


BLK: 60 cm: 8% V15G5T; + 92% Flibe

SLD: 30 cm: 80 / Fe1422 + 20 / H20

|         | No<br>Limiter   | Flibe/V<br>Limiter | H20/Cu-2Re<br>Limiter | Salf-Rapul<br>Limiter |  |
|---------|-----------------|--------------------|-----------------------|-----------------------|--|
| TG      | 1.05            | 1.02               | 1.04                  | 1.05                  |  |
| T7      | 0.14            | 0.13               | 0.12                  | 0.12                  |  |
| Tc + T7 | 1.19<br>(±1.3%) | 1.15               | 1.16                  | 1.17                  |  |

No Strong Advance Effects on TBR



