POWER CONVERSION FOR LIQUID WALL CONCEPT (LWC)

DAI-KAI SZE ARGONNE NATIONAL LABORATORY

PRESENTED AT THE APEX-ALPS MEETING ALBUQUERQUE, NEW MEXICO JULY 27-31, 1998

ENERGY AND MASS BALANCE

Percentage of thermal power radiated to the first wall	
	20%
Assumed first wall coolant thickness	20 /0
	2 cm
Percentage of thermal power deposited within the 1 st wall coolant	
	12%
Total power deposited in the first wall coolant	
	32%
Power deposited in the blanket	
	68%
First wall coolant inlet temperature	
	300°C
First wall coolant exit temperature	
	320°C
Blanket coolant inlet temperature*	
	320°C
Blanket coolant exit temperature	600°C

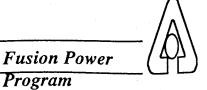
^{*}Part of the first wall coolant temperature will pass through the blanket to be heated up to 600°C .

FRACTION OF THE FIRST WALL COOLANT WILL GO TO BLANKET

 $Q=MCp\Delta T$

in which:

Q is the thermal power M is the mass flow rate Cp is the specific heat


 ΔT is the coolant temperature rise

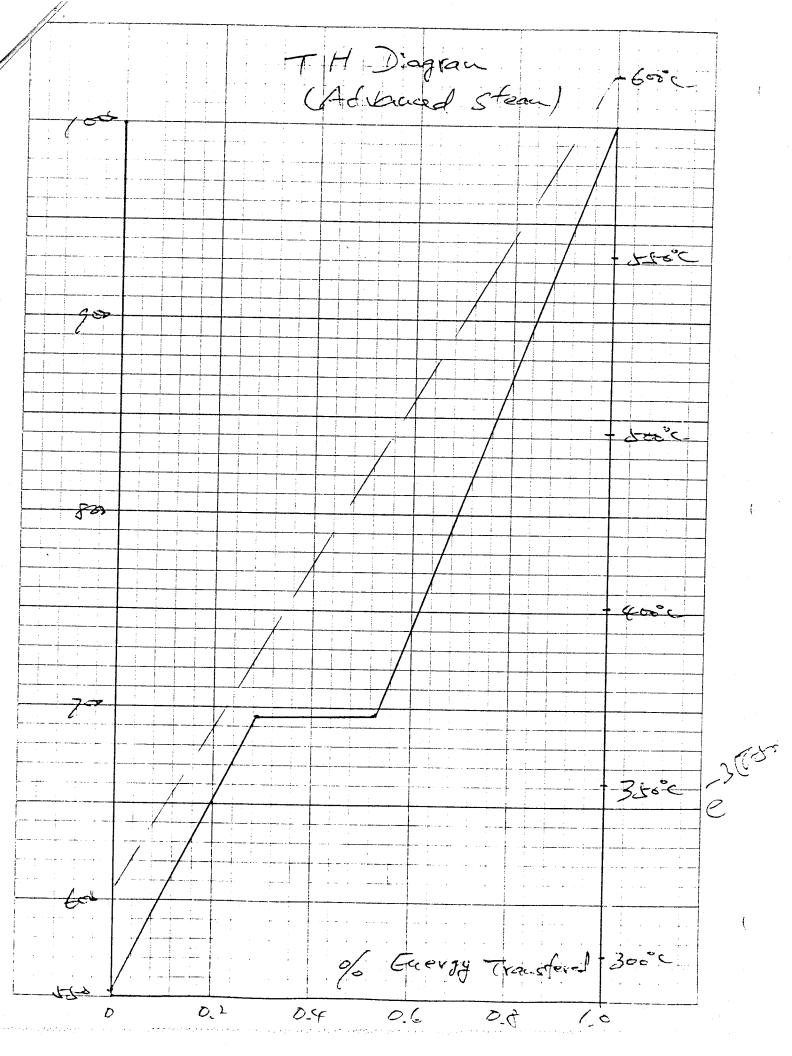
First Wall

Blanket

Q	0.32	0.68
$\Delta_{ m T}$	20	280
M	6.6	1

or, only 15% of the first wall coolant can go to the blanket and be heated up to 600°C .

POWER CONVERSION


85% of the first wall coolant

Blanket coolant

Q	680 MW		1820 MW
Tin	300°C		300°C*
Tout	320°C		600°C
Conversion system	PWR		Advanced steam
Cycle efficiency	35%		44%
Power out put	238 MW		800 MW
Gross power		1038 MW	
Cycle efficiency		41.5%	

^{*}It will be very useful if the Tin is 315°C, instead of 300°C.

CONCLUSION

- Only a very small fraction of the first wall coolant can be heated up by the blanket to 600°C.
- This limitation is controlled by mass and energy balance, and can not be changed after the temperature requirements are set.
- For the LWC design, the best way to use the thermal energy is to have two steam cycle.
- The inlet temperature for the advanced steam cycle need to be increased to 315°C.

