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INTRODUCTION

This note describes the basis for a dynamic computer simulation of an axisymmetric free-
surface liquid metal MHD flow with galvanically driven electrical currents. The goal is to
eventually use a later version of this computer simulation within the APEX&ALPS study
efforts as a tool to investigate and evaluate various proposed free-surface flowing LMMHD
blanket design concepts for possible application in tokamak magnetic fusion reactors. In
these proposed design concepts, liquid metal (preferably lithium) enters the toroidal
chamber enclosing a tokamak plasma, through two toroidally continuous slits located at the
chamber’s top. As the liquid metal flows to the chamber’s bottom it is held against the
chamber’s walls and away from the plasma by a magnetic restraining force developed
within the bulk liquid metal, which acts in conjunction with gravitational and centrifugal
force effects. After reaching the chamber’s bottom, the liquid metal exits through one or
more toroidally continuous slits provided for that purpose.

The magnetic restraining force density, a “body force”, is developed within the bulk liquid
metal through J X B interactions between the externally generated toroidal field, which
must be present for any tokamak, and poloidal electric currents which are galvanically
driven in the liquid metal for this restraining force purpose.

Figure 1: General Electromagnetic Restraint Scheme
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However, the toroidal component of current is related to the poloidal flux via
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where A =t a———a——+ 3 is the Grad-Shafranov operator, again. Substituting
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Equations (42) and (21), the velocity evolution equations become:
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In order to enforce the divergence-free velocity condition, the pressure field must in general
have a particular non-zero divergence . Taking the divergence of Equation (34) and

requiring that Veua=0=V 0%‘5 =0, we get the Pressure Poisson Equation:

V2p=—pVe[(iieV)i]+ Ve xB) | (46)

where spatially constant density and kinematic viscosity have been assumed. In component
form this can be rewritten as:
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The evolution equation for poloidal flux is obtained by substituting Equations (21) and (42)
into (24) and combining terms:

ov¥ ¥ ¥ 1
= —A ¥
3ty Yz (48)

Boundary conditions for poloidal flux are implemented via the MacDonald-Wexler
algorithm, which uses Greens functions related to the finite region boundary.

The free-surface grid boundary must itself move to follow the perpendicular motion of the
fluid. The required velocity of the grid boundary, vy, is

w ®

where 1 is the unit vector perpendicular to the free surface.
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Figure 1 is an axisymmetric elevation view (i.e., a poloidal, or meridional, half-plane)
showing general aspects of the proposed design schemes for an electromagnetically
restrained free-surface liquid metal blanket. The depicted features are to be represented in
the computer simulation, although the initial (alpha0) version of the computer simulation
omits some of the features. All simulation variables are modeled as having axisymmetric
geometry, as is appropriate for LMMHD designs intended to operate in close proximity
to the necessarily axisymmetric tokamak plasma’s magnetic confinement geometry.

The fundamental simulation variables have been chosen in a novel manner which avoids
any need to numerically integrate electromagnetic partial differential equations through
vacuum regions, instead relying on analytical expressions to give boundary conditions
on conducting material surfaces. The simulated electrical variables which do vary within
conducting regions are the poloidal threading current and the poloidal magnetic flux.
Although it would also in principle be possible to use a velocity stream function/ vorticity
formulation for the axisymmetric flowing liquid metal, this simulation instead directly

uses velocity components expressed in a (r,¢,z) cylindrical coordinate system, in order to
reduce free surface boundary condition complications.

An adaptive unstructured grid is used in the simulation both to track the free surface
boundary and also to resolve internal boundary layers without requiring an excessive
number of grid points. The free surface boundary nodes are moved within each time step,
following the free surface motion. Internal nodes are then reallocated, repositioned , and
interpolated between time steps.

An unfortunate side effect of the adaptive grid’s ability to resolve small features is that the
resulting differential equations in time, although analytically stable, can become “stiff”,
i.e. they can develop some extremely fast dissipative time constants . Explicit numerical
integration then becomes unstable unless the integration time steps are similarly small. To
avoid this pathological behavior, the time integration method used throughout this
simulation is the backwards (implicit) Euler method. This method has the advantages that
it is unconditionally “A-stable” and is even “L-stable” as defined by Lambert, but has the
disadvantage that its computational algorithm is considerably more complicated than
explicit integration methods. For one instance, the incompressible flow dynamical
equations couple the implicit solution of a future “Pressure Poisson Equation” with the
implicit calculation of a future velocity field. For another, the motion and future position
of the free surface boundary must be consistent with its future velocity. These implicit
method algorithms are derived based on linearizations of the defining equations, and these
linearized equations are efficiently solved via multigrid techniques. “Outer” Picard iteration
substitutions in the nonlinear equations are employed to further improve accuracy.

In order to avoid intolerable complexity in the algorithm for moving free surface boundary
nodes, the finite elements adjacent to the free surface should have a simple structure. In
particular, complicated finite elements with internal nodes not on the free surface boundary
and with associated higher order interpolation functions would require more sophisticated
algorithms to implement free surface boundary motion than needed for piecewise linear
interpolation on triangular cross section finite elements. To simplify the simulation, simple
axisymmetric ring elements with triangular cross section and piecewise-linear C° continuity
interpolation are used for all field variables throu ghout the computational domain.

Published literature documents various unsuccessful experiences in computing solutions to
Navier-Stokes equations for incompressible fluid flow usin g Galerkin finite element
formulations, with some reported problems being quite subtle. The most common
Galerkin formulations include an integration by parts invoking Greens theorem, after which
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the pressure term enters the formulas directly but only the first spatial derivatives of the
velocity terms are included. “Spurious pressure modes” in the solution can result if the
same degree of interpolating polynomials is used for both pressure and velocity; itis
reported that they can be avoided by using a velocity interpolation polynomial of one hi gher
degree than the polynomial used for pressure interpolation. It is also reported that
“spurious pressure modes” are avoided by using an explicit “pressure projection” method,
or by using the “least squares™ finite element formulation instead of the Galerkin one.
Another observed problem is “locking” which prevents finding a nonzero solution when
an insufficiently rich set of interpolation functions for velocity are overconstrained by
incompressible continuity requirements. “Locking” can also be grid-dependent, with the
solutions found on coarse grids not converging as the grid is refined. Quadratic or cubic
polynomial interpolation functions for velocity components have been successfully
employed in computer codes avoiding both of these pathologies.

This simulation attempts to avoid such numerical difficulties while still using C° continuous
piecewise linear interpolation for all fields, by using an unconventional Galerkin
formulation for velocity and pressure in which Greens theorem is not invoked. Instead of
integrating by parts to replace second derivatives by first derivatives, additional simulation
variables are employed to separately estimate the first derivatives of the field variables with
their own piecewise linear interpolation. Thus, in this formulation, spatial derivatives of
the estimated field variables are different from estimates of the field variables’ spatial
derivatives. This general formulation was termed “Mixed Finite Element Approximation”
by Lapidus and Pinder, but no references have been found documentin g its performance
track record with Navier-Stokes systems.

The following description is organized in four sections:
1) Definition of the fundamental simulation variables and derivation of their
defining (partial) differential equations and boundary conditions.
2) Definition of the numerical algorithms.
3) Definition of the simulation program structure and modules.
4) Initial results from simulation.

SIMULATION VARIABLES AND EQUATION DERIVATIONS

We start with quasi-static electromagnetic field equations:

Ampere’s Law:

VxB=pJl (=VeJ=0) (1

Faraday’s Law:

vxE=-28 2)
ot

Magnetic Vector Potential:

VeB=0 & VxA=B 3)
Coulomb gauge for magnetic vector potential:

VeA=0 4)

Substituting vector potential into Faraday’s Law yields
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Vx(E+a—A)=O = E=-=——-VV (5a,5b)
ot ot

where V is the voltage potential.

Ohm’s Law:
T=6(E+Eps +ixB) (6)

In Ohm’s Law, the electromotive force (emf) of the electrical power supply has the
mathematical form of a nonconservative electric field which is nonzero only in the space
between the power supply terminals. It is not actually an electric field in the sense that the
electromotive force does not directly contribute to Faraday’s law. The vector field, i,
represents conductor velocity, and is generally nonzero for flowing liquid metal.

Combihing the curl of Ohm’s law with Faraday’s law gives:

%—?:Vx(ﬁxﬁ)-VX%+VXEemf @

It may seem paradoxical that in the case of two nested solenoid coil windings, either
toroidal or infinitely long, a time varying current in the inner windin g induces a voltage in
the outer winding even though it produces identically zero magnetic field there. One

explanation is found in Equation (5b) and in the fact that the vector potential, A , does not
vanish outside an infinite or toroidal solenoid despite the fact that B=V x A does.

Computer calculation using A as a field variable instead of B is conventional practice for
time-varying magnetic situations such as those involving eddy curents. Another explanation

is that the joint use of spatially continuous B and E fields for time varying situations does
not fail on simply connected computational domains (i.e., domains which do not enclose
any “computational holes” such as an inner nested solenoid excluded from computation).

The axisymmetric time-varying vector field variables to be computed are the fluid velocity ,
u, and the magnetic induction, B, represented in cylindrical component form as

U=urd; +uyh+u,d, Sa5b)
hag ~ A a’
B=Bd; +By0+B,4,

Because of the impressive computational demands in calculating time-varying LMMHD
flows, we do not want the computer to waste avoidable time and effort calculatin g
electromagnetic fields in vacuum regions. We therefore seek a formulation in which the
computational grid covers only the electrically conducting region, including liquid metal
and solid metal subregions. This formulation requires replacing the magnetic field
components with different but related scalar variables in the simulation, as developed
below. The toroidal magnetic field component is redefined in terms of a “poloidal threading
current” variable which has the distinction that it is spatially constant throu ghout vacuum
regions. The toroidal field in the enclosed “computational hole” surrounded by liquid metal
is replaced by a time-varying “trapped flux” variable which has no spatial variation. The
poloidal magnetic field components are redefined in terms of the poloidal magnetic flux
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variable, and a Greens function method is used to directly represent poloidal flux on the
conducting computational region’s boundary without calculating it in vacuum regions.

Because of axisymmetry, the toroidal field in a vacuum region varies exactly as

BgR
B, =00 )
r

for some value of B(R,. In a tokamak plasma the externally imposed toroidal field is
typically much stronger than the variations in toroidal field caused by poloidal plasma
currents, so the toroidal field still varies approximately as given by Equation (9) even
when a tokamak plasma is present. As depicted in Figure 1, the contour S lies in a
poloidal plane and surrounds only the vacuum (i.e., plasma) region which is enclosed
inside the metallic conducting region. Using Equation (9) to calculate the enclosed toroidal

field Ymagnetic flux gives: | ¢ + R h&j(‘ CL@CQV' 7
(D—f BOROd.d _B.R Ed 5\’\JJ\ r 10
=== 1z—oo§asrr (o

where the integral around the Figure 1 contour, 98, is evaluated in the clockwise direction

as per Stokes’ theorem. This enclosed toroidal magnetic flux variable, ®, cannot change
instantaneously because it is surrounded by conducting material. It thus is an appropriate
choice to use directly as a dynamic simulation state variable. Integrating the toroidal
component of Equation (7) over the Figure 1 vacuum region, S, and invoking Stoke’s
theorem gives its time rate of change vs. the power supply voltage and other variables:

d Vi ad =omoss
E-_VPS—§aSEOd€+§aSuXBOd€ | (1D

In axisymmetric geometry, the total net poloidal “threading current” between the center line
axis of symmetry and any (r,z) location, expressed in ampere-turns, is related to the local

toroidal field, Bq,(r,z), by
2

I(r,2) = =" 1By (r,2) (12)
u

In particular, a single constant value of this threading current, I, is valid for all locations

throughout the enclosed vacuum region and its boundary:

I =-2£BOR0 (13)

Combining Equations (10) and (13) gives the poloidal threading current’s boundary
condition value on the enclosed liquid metal-vacuum interface, in terms of the trapped

toroidal flux, &, and the boundary’s shape:

2t 0

I T
§as';dl'

(14)
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The other spatially constant boundary condition value of poloidal threading current is on the
exterior surface of the conducting region. It is simply the toroidal field coil system’s total
ampere-turns, L. which is assumed to remain constant in time for this simulation .

The conducting region includes a flowing liquid metal subregion and a solid metal backing

subregion. Within each subregion the simulation models the metal conductivity, 6, asa
constant value, with different values in different subregions. The boundary condition at the
solid/liquid interface requires continuity of the tangential electric field and of the normal
current density:

n, n, ? n, n, gl
T —
OLig OSLiq | g1 =[0sal  Osol | 51 (15)
n, -n, | — n, -n, |—
z "\ 0z iquia R T,

Here, (n,, n,) is a unit vector perpendicular to the solid/liquid interface.

The poloidal current density can be expressed in terms of the “threadin g current”, as

Tp = Jrﬁr +JZ5*Z

b (16)

= V X (.EPL
2nr

orin component form,
o
P = ————

27r 0z (17a.b)

] = +__1_§£
2 omror

which allows the Equation (11) contour integral involving current density to be rewritten as

-

J o5 1 1§ -
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Using Equation (12) for the toroidal field component, the other contour integral in Equation
(11) can be rewritten as

§asax1§od2=

~ ~ ~ N I A . R R
- §as (urar +up®+uzd, )X (Bd, +2—}’;_1-(P+Bzaz)0 (A dr +4,dz) = (19)

_f M .
= Sﬁasz);;(urdz—uzdm §as u4(B,dr - B,dz)
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We can also define ¥, as the net the poloidal magnetic flux between the center line axis of
symmetry and any (r,z) location. Then the poloidal field can be written as:

Ep = Brér + Bzﬁz

n 20
=V><(—\I—l9 0
27

or in component form, as

___1o¥
T 2nr o0z
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Then the final integral in equation (19) can be rewritten as

§a (g (B,dr~Bd2)

1 o 0¥ . ¥
___3988 (gd +a_d z) (22)

Combining equations (18), (19) and (22) with (11) results in:
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Since E, =0 in the conductin g region, the field dynamics there are obtained from Equation
(7) and Ampere’s law, as:

§§=Vx(ﬁx1§)+—1—621§ a 24)
ot ou

Fixing attention on the toroidal components,

0By

= 0 e (- V2B)+ G (VX(axB)) (25)
loji}

shows the dissipative term is completely independent of the poloidal field,

2
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and may be rewritten in terms of the poloidal threading current as:

s Lleam_m 13 3 1. 2% 1 11
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where Ais the Grad-Shafranov operator,
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Thus the substitution of Equation (27) into Equation (25) gives:
Mzt _ L A 1rz)+ 2™ de(Vx(@xB)) | (29)
ot ou
The last term of Equation (29) can be rewritten in terms of the components, as
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The last terms in Equation (30) can be rewritten as a cross product of gradients:
o¥ o0 u o¥ o u u
—E = (- () =S (V) x V(D) (31)
L orodz r oz or r il r

Substituting Equations (30) and (31) into (29) gives the evolution equation for the poloidal
threading current variable:’

CL ORI SR S I
ot Tor %0z ou r

r Uep
+—=V¥x V() (32)
i r

Motion of the liquid metal is modeled by the Navier-Stokes equations for incompressible
- flow with constant properties (e.g. density and viscosity), with body forces including
gravity and electromagnetism, and with surface tension effects acting on the free surface.

In vector form, where u(r, z,t) is the liquid velocity,

Vei=0 | (33)
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CIG I P P £ T L3
ot p p

(34)

where g=g,4, with g,=-9.8 m/s’ on the earth’s surface. There is a “no-slip” boundary
condition specifying the liquid velocity on all stationary material surfaces,

(g, t)IMateriaISurface =0 (35)

The pressure “boundary condition™ on the free surface is

plFreeSurface Y(R R2) (36)

where R, and R, are the surface’s local radii of curvature and the surface tension
parameter, 7, is a material constant.

The electromagnetic force can be resolved into cylindrical components as follows:

IxBoll A oy o, L, iy
IXB=[-5 -8 +Tgb+ o =81 x [B+2—4+B,3,]
1 dl 1
=118, -y,
7 27r or 37)
He=D —(——-1—25) B o
2w or 2nrdz” °
1 o1 1
He- D) B ),

Axisymmetric equations (34) and (35) can be written in cylindrical coordinates component
form as follows:

10(u;) | 9y _
r or * 0z =0 (38)
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