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Overview

HEAT TRANSFER ISSUES

a. Peak pebble temperature and temperature gradient

® to ensure temperature and stress limits can be met

b. Area and volume requirements to transfer heat in the HX
(a high-temperature HX is likely to be expensive)

¢. Temperature distribution, important for other reasons:

® ¢.g., tritium control

PHENOMENA

1. Energy deposition characteristics and
temperature evolution in the heated zone

(low-density free-falling medium)

2. Heat transfer in the HX

(dense confined medium)

R&D NEEDS



1. Energy Deposition

Key Issue:

Deposition characteristics around and through pebbles determines
peak surface temperature and near-surface thermal gradients (stresses)

1. Plasma particle flows:

Depends on plasma contact, CX neutral flux

Complications:
Sheath effects
ADebye = 743 T[eV]1/2 n1/2 [cm]
100 eV, 1012 /em3 — 75 pm
(particle separation less than sheath size would result in electrostatic effects)
Larmor radius effect
H Larmor radius = 102 T1/2 /B {cm]
100 eV, 50 kG — 200 um

Pebble rotation

Two reasons this may be worth considering:
1. Determine impact of pebble-plasma contact

2. Important for divertor or near-divertor regions
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1. Energy Deposition, cont’d. 2. Heat Transfer in the Heat Exchanger

2. Radiation:
h = hy + hge + hy
Optical properties depend on
s particle gas radiation
geometry, pebble directional convection® convection

emissivity /reflectivity, spectra
Time-dependencies: pebble *includes gas-phase conduction at contact points

rotation, bed geometry evolution ;
J. S. M. Botterill, “Fluid-Bed Heat Transfer,” Academic Press, London 1975.

Re-emission could reduce

temperature peaking factors:
P P & ® In vacuum, hgc =0

T(C) 5.7x10-8 T*

1807(?0 ot h(/)[.‘{\é/mz D O O O emission

® hypcis highly dependent on the flow field -

empirical data typically is used, and can not be extrapolated easily
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3. How does hy reduce hpc?
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2. Heat Transfer in the Heat Exchanger, cont’d. Literature

4 4
6 €r (Tped = Tsurface)
r= ¢ A huge literature exists on fluidized beds
Tbed — Tsurface

Limited heat transfer studies in vacuum, vertical free-flow
for 1000 C bed, 800 C surface, e~1 . . . .
hy ~ 400 W/m2-K Some particle-particle and particle-wall radiation results

e 3D numerical simulations and experimental work has been done very
recently on the mechanics of granular materials, which is identical
under vacuum conditions
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Recommendations

Near-term

® Approximate single-sphere heat transfer and stresses

3 is the 3D extension of AFCEL,

progmmm simulate the trze 3D behavior of partizulate materials. £

-

® 2D (cylinder) model for scoping calculations.
Explore critical issues, develop physics models.

® Plan empirical verification in table-top experiments

Medium-term

® Develop and/or extend an existing 3D code to model energy
deposition, heat transfer and stresses.

® Perform table-top experiments

Pirticte Fiow Code in 3 Dimensicas .-

Longer-term

® System development

® Experiments in a plasma device

ITASCA

A three-dimensional distinct e



Collaborations

Japanese activities on granular media for fusion:
Masahiro Nishikawa, Osaka University
Akihiko Shimizu, Kyushu Univbersity

Tomoaki Kunugi, Tokai University

US/] meeting on PMI, Yokohama, Oct. 1998



