Heat Transfer Issues and Phenomena for Granular First Walls

M. S. Tillack

APEX Meeting July 27-28, 1998 Albuquerque, NM

Overview

HEAT TRANSFER ISSUES

- a. Peak pebble temperature and temperature gradient
 - to ensure temperature and stress limits can be met
- b. Area and volume requirements to transfer heat in the HX (a high-temperature HX is likely to be expensive)
- c. Temperature distribution, important for other reasons:
 - e.g., tritium control

PHENOMENA

- Energy deposition characteristics and temperature evolution in the heated zone (low-density free-falling medium)
- 2. Heat transfer in the HX (dense confined medium)

R&D NEEDS

1. Energy Deposition

Key Issue:

Deposition characteristics around and through pebbles determines peak surface temperature and near-surface thermal gradients (stresses)

1. Plasma particle flows:

Depends on plasma contact, CX neutral flux

Complications:

```
Sheath effects
```

$$\begin{split} \lambda_{Debye} = & 743 \ T[eV]^{1/2} \ n^{-1/2} \ [cm] \\ & 100 \ eV, \ 10^{12} \ / cm^3 \rightarrow 75 \ \mu m \\ \text{(particle separation less than sheath size would result in electrostatic effects)} \end{split}$$

Larmor radius effect H Larmor radius = $102 \text{ T}^{1/2} / \text{B [cm]}$ 100 eV, $50 \text{ kG} \rightarrow 200 \, \mu\text{m}$

Pebble rotation

Two reasons this may be worth considering:

- 1. Determine impact of pebble-plasma contact
- 2. Important for divertor or near-divertor regions

Fig. 1 Larmor radius limited heat load spreading

Fig. 2 Incident angle limited heat load spreading

1. Energy Deposition, cont'd.

2. Radiation:

Optical properties depend on geometry, pebble directional emissivity/reflectivity, spectra

Time-dependencies: pebble rotation, bed geometry evolution

Re-emission could reduce temperature peaking factors:

T (C)	5.7x10 ⁻⁸ T ⁴
878	0.1 MW/m ²
1000	0.15
1448	0.5
1774	1

Figure 4-6 Directional emissivity predicted from electromagnetic theory

2. Heat Transfer in the Heat Exchanger

$$h = h_{pc} + h_{gc} + h_{r}$$

particle gas radiation convection

* includes gas-phase conduction at contact points

J. S. M. Botterill, "Fluid-Bed Heat Transfer," Academic Press, London 1975.

- In vacuum, $h_{gc} = 0$
- h_{pc} is highly dependent on the flow field empirical data typically is used, and can not be extrapolated easily

Key Questions:

- 1. How is hpc affected by gas pressure?
- 2. At what point does hr become dominant?
- 3. How does h_r reduce h_{pc}?

Fig. 8. Wall conductance for 4.3 mm balls with He and N_2 fill gas.

2. Heat Transfer in the Heat Exchanger, cont'd.

$$h_r = \frac{\sigma \, \epsilon_r \, (T_{bed}^4 - T_{surface}^4)}{T_{bed} - T_{surface}}$$

for 1000 C bed, 800 C surface, ϵ ~1 $h_r \sim 400 \text{ W/m}^2\text{-K}$

FIG. 9 Effect of particle size on maximum bed-to-surface heat transfer coefficient h_{max} for operation at (1) 20°C and 100 kPa, (2) 20°C and 600 kPa, and (3) 600°C and 100 kPa. Interphase as connective component of heat transfer h_oc taken as that for quiescent bed; particle convective component h_o estimated by difference [26].

FIG. 10 Variation in maximum bed-to-surface heat transfer coefficient $h_{n,n}$ with operating temperature compared with the prediction of the Zabrodsky correlation, Eq. (57), for beds of sand of different mean particle size [26]. Note that $h_{n,n} \approx h_{p,n+1} + h$,

Literature

- A huge literature exists on <u>fluidized</u> beds
 - Limited heat transfer studies in vacuum, vertical free-flow Some particle-particle and particle-wall radiation results
- 3D numerical simulations and experimental work has been done very recently on the <u>mechanics</u> of granular materials, which is identical under vacuum conditions
 - X. Zhuang, A.K. Didwania, J.D. Goddard, "Simulation of the quasi-static mechanics and scalar transport properties of ideal granular assemblages," J. Computational Physics, 121 (2), Oct. 1995.
 - V.V.R. Natarajan, M.L. Hunt, E.D. Taylor, "Local measurements of velocity fluctuations and diffusion coefficients for a granular material flow," J. Fluid Mechanics 304, Dec. 1995. p.1-25.
 - C.S. Campbell, "Self-diffusion in granular shear flows," J. Fluid Mechanics, 348, 10 Oct. 1997. p.85-101.
- "The heat transfer area seems to be very lightly traveled."
 I have yet to find an article on vacuum heat transfer in falling beds.
 - V.V.R. Natarajan, M.L. Hunt, "Heat transfer in vertical granular flows," Experimental Heat Trans., 10 (2), Taylor & Francis, April-June 1997. p.89-107.
 - R.E. Nietert, S.I. Abdelk-Khalik, "Thermal hydraulics of flowing particle-bedtype fusion reactor blankets," Nuclear Eng. & Design, 68 (3), 1981. p.293-300.

NSF ENGINEERING RESEARCH CENTER on Particle Science and Technology (\$60M/11 yr, 1994) http://www.erc.ufl.edu/

Recommendations

Near-term

- Approximate single-sphere heat transfer and stresses
- 2D (cylinder) model for scoping calculations.
 Explore critical issues, develop physics models.
- Plan empirical verification in table-top experiments

Medium-term

the true 3D behavior of particulate materials.

- Develop and/or extend an existing 3D code to model energy deposition, heat transfer and stresses.
- Perform table-top experiments

Longer-term

- System development
- Experiments in a plasma device

Collaborations

Japanese activities on granular media for fusion:

Masahiro Nishikawa, Osaka University
Akihiko Shimizu, Kyushu Univbersity
Tomoaki Kunugi, Tokai University

US/J meeting on PMI, Yokohama, Oct. 1998