APEX-6/FHPD Workshop

Plan of Thermofluid Safety Experiments for Fusion Reactors

K.TAKASE (JAERI)

February, 1999

Ingress of Coolant Event (ICE)

Break of coolant channels

Water ingress into a plasma chamber

Water evaporation on a heated surface

Pressure rise

Plasma chamber

Design pressure =0.5 MPa

- Beyond a design pressure of the plasma chamber?
- No experimental data under vacuum conditions

1st Step's Thermofluid Safety Experiments

As the 1st step, preliminary thermofluid experiments were carried out to investigate *physical phenomena* under the condition that *a small amount of water* was injected into the plasma chamber.

Main controlling factors on pressure rise:

During water injection

During and after water injection

An example of pressure transient during the ICE event

Pressurization due to flashing

$$p(t) = \frac{c_p MR}{mM} \int_0^t \frac{T_{sat(t)} \left\{ T_w - T_{sat}(t) \right\}}{V_v(t) h_{fg}(t)} dt$$

Where, P: pressurization due to flashing;

t: time;

c_p: specific heat capacity of water;

m M: injected water flow rate;

R: universal gas constant;

M m: molecular weight of water;

T_w: water temperature;

T_{sat}: saturation temperature;

 V_v : volume of the vapor in the VV;

h_{fa}: latent heat of evaporation.

Key Phenomena at ICE Events

Integral performance of safety systems

Scaling of Test Facility

Simulation of a double-ended pipe break

- Coolant channel diameter:
 - \sim 10 mm
- Injected flow rates:
 - \sim 0.05 m³
- Volume of plasma chamber:
 - \sim 0.5 m³

Injected flow rates in ITER under multiple-pipe break conditions: around 1/10 of volume of the plasma chamber

Outline of Test Facility

Effect of injected flow rates on pressure rise

Effect of orifice size on pressure rise

Effect of VV temperature on pressure rise

Summary

- Construction of a new thermofluid test facility will be completed by the end of 1999.
- Experimental parameters will be set based on ITER-RCO (Reduced Cost Option).
- Integral performance of fusion safety systems will be tested under ICE conditions.
- Test data will be used for validation of fusion safety analysis codes.