FUSION NEUTRONICS EXPERIMENTS
AT FNG:
ACHIEVEMENTS IN THE PAST 10 YEARS
AND FUTURE PERSPECTIVES

presented by
Paola Batistoni
ENEA – Fusion Division

Fast Neutron Physics International Workshop &
IEA International Workshop on Fusion Neutronics
Dresden, September 5-7, 2002
OUTLINE

- Introduction
- The achievements:
 - Examples of experiments & analysis carried out in 1992-2002
 - Main results relevant for the design of fusion reactor
- The present activity
- The future perspectives
The **Frascati Neutron Generator** (FNG) started operations in Nov. 1992 making available 14 MeV neutrons at a medium intensity \((10^{11} \text{n/s})\) to EU Fusion Community.

In that moment, a transition was taking place from national activities to strong international collaboration stimulated by:

- **ITER - Engineering Design Activity**
- **FENDL (IAEA)**
- **IEA Implementing Agreement on Fusion**

(JA – US collaboration already established since 10 years)

The Fusion Neutronics community strongly supported the idea of international collaboration in neutronics experiments, in database & code improvement, in development of experimental techniques.
Status of Fusion Neutronics in 1992, e.g. in EU

- Nuclear studies for NET concluded that

 “nuclear data uncertainty is assumed to create an uncertainty in the magnet nuclear responses of about 40%”

- Safety margins ≥ 5 on shielding attenuation were applied (corresponding typically to about 12 cm additional shield) (R. Santoro, ITER JCT Garching, private communication)

- It was calculated that 1 cm additional shield would increase the reactor cost by 5 MECU (F. Gervaise, The Net Team, 1990)
Experiments carried out in 1993-2002

7 benchmark experiments for ITER and for advanced materials: Stainless steel bulk shielding, Nuclear heating, Bulk shield for ITER, Streaming for ITER, Shut down dose rate for ITER, SiC, W

- Activation experiments on fusion relevant materials: SS-316 (IG), F82H, MANET, EUROFER, Fe, Cu, V & V-alloys, SiC, W, Al, Cr, Pb.

- Experimental techniques used: activation foils, TLD, active dosemeters, fission chambers, n/γ spectrometers (scintillators, proton recoil detectors), decay heat detectors

- Nuclear data libraries used & validated: EFF-2.4 →3.1, EAF-4.1→2001, FENDL-1 →2, JENDL-FF, JENDL-3.2(A), IRDF-90.2

- Numerical tools developed and tested (e.g. for sensitivity uncertainty analysis, dose rate calculations in complex geometries)

- Collaborations: ENEA-Frascati, CEA-Cadarache, FZK-Karlsruhe, TU-Dresden, JSI-Ljubljiana, UKAEA-Culham, JAERI-FNS, KI- Moskow

Associazione EURATOM ENEA sulla Fusione
Experiments carried out in 1993-2000

“Design oriented” experiments
in support of
ITER nuclear design
Objective: verify design shielding calculations for ITER

Mock-up of first wall, shield blanket and vacuum vessel (stainless steel+water), SC magnet (inboard) irradiated at the Frascati 14 MeV Neutron Generator (FNG)

ENEA- Frascati, TU Dresden, CEA Cadarache, FZK Karlsruhe, Josef Stefan Institute Lubljana, Kurchatov Institute Moscow

Associazione EURATOM ENEA sulla Fusione
BULK SHIELD EXPERIMENT for ITER

Measurements of n,γ spectra, activation rates, nuclear heating, activation of IG-steel
Analysis with MCNP and FENDL-1 (ITER reference), FENDL-2, EFF-3

Example #1: Fast neutron flux on the SC magnet
Measurement: $^{93}\text{Nb}(n,2n)^{92}\text{Nb}$
Analysis: MCNP/FENDL-1 EFF-3

Example #2: Nuclear heating at the SC magnet
Measurement: TLD-300 with n/γ discrimination
Analysis: MCNP/FENDL-1&2, EFF-3
Objective: verify design shielding calculations for ITER in presence of streaming paths

Example #1: Fast neutron flux
Measurement: $^{93}\text{Nb}(n,2n)^{92}\text{Nb}$
Analysis: MCNP/FENDL-1/2 & EFF-3

Example #2: Nuclear heating
Measurement: TLD-300 with n/γ discrim.
Analysis: MCNP/FENDL-1&2, EFF-3
Conclusions of SHIELDING EXPERIMENTS for ITER

- Calculations based on MCNP/FENDL-1 (and also FENDL-2 and EFF-3) nuclear data correctly predict n/\(\gamma\) flux attenuation in a steel/water shield up to 1 m depth within \(\pm 30\%\) uncertainty, in bulk shield and in presence of streaming paths.

- Both calculations and the related uncertainties were validated by sensitivity uncertainty/analysis and FENDL covariance data.

- Extrapolation to ITER conditions & requirements was performed.

- In the ITER design revision from ITER to ITER-FEAT:

 \[R_0 : 814 \Rightarrow 620, a : 280 \Rightarrow 200 \quad P_{\text{fus}} : 1.5 \text{ GW} \Rightarrow 0.8 \text{ GW} \]

 Neutron Wall Loading : 1 MW/m\(^2\) \Rightarrow 0.7 MW/m\(^2\)

 the thickness of inboard shield was reduced from 94 cm to 82 cm
 only \(\approx 5\) cm reduction from reduction of wall loading

 REDUCTION OF SAFETY MARGINS
Objective: verify shut down dose rate calculation for ITER out-vessel, in-cryostat for $t_{\text{cool}} \approx 1$ month

Example:
Dose rate from immediately after shut down to about 4 months of cooling time: Measurement by Geiger–Muller detector & TLD

Associazione EURATOM ENEA sulla Fusione
Example:
Dose rate from immediately after shut down to about 4 months of cooling time:

Analysis by
- FENDL-2/MC&A
- EFF-3/EAF2001
- JENDLFF/JENDL.3.2

and using
- Rigorous method with coupled transport-activation codes (MCNP-FISPACT) (R2S)
- Direct method with modified MCNP (D1S)
The shut down dose rate outside the ITER vessel is calculated by FENDL-2 nuclear data libraries within ± 15% from a few days up to about 4 months of decay time.

Both using the rigorous two-step approach (R2S, coupled MCNP- FISPACT codes), and using the direct, one-step method (D1S, modified MCNP) developed and used in the ITER design.

Three nuclear data packages largely used in fusion design, FENDL-2, EFF-3/EAF-2001 and JENDL-FF/JENDL-3.2A were compared and validated using the ITER vessel mock-up experiment ⇒ Need for improvement of relevant data was pointed out.
Experiments carried out in 2000-2002

Experiments for the validation of EFF / EAF
European nuclear data libraries for
Advanced Materials

(started in 2000)
Objective:
Provide validation of EFF data in calculating the shielding capability of Silicon Carbide SiC (a candidate, low-activation structural material for the reactor)

ENEATUD/FZK/JSI Collaboration

Sintered SiC, weight 470 kg, 127 pieces (borrowed by ENEA from JAERI for 1 year)
Measurements of n,γ spectra, activation rates, nuclear heating

Associazione EURATOM ENEA sulla Fusione
Example: Measurement of the fast neutron flux by $^{93}\text{Nb}(n,2n)$

Analysis with MCNP & DORT, using EFF-, FENDL & JENDL

Sensitivity/Uncertainty analysis based on Monte Carlo and on deterministic approach:

Example: S/U analysis of $^{93}\text{Nb}(n,2n)$ measurement by SUSD3D/EFF-3(&2.4)

- Calculation and related uncertainties based on EFF data are in agreement with experiment
- Severe underestimation by FENDL-2 is observed
Objective:
Provide validation of EFF/EAF data for W (ENEA, TUD, FZK, JSI) (candidate material for divertor armour & for advanced concepts structural material)

DENSIMET 176 / 180
(> 92% W, Fe, Ni)
weight 1.8 ton, 28 pieces

Measur.: n/γ flux & spectra, activation, decay heat

Analysis: MCNP & DORT, EFF-3, EAF2001

Sensitivity/Uncertainty analysis based on Monte Carlo (MCNP) and on deterministic (SUSD) approach

Associazione EURATOM ENEA sulla Fusione
Future perspectives: BREEDER BLANKET EXPERIMENT

- In the framework of the EU long term FT programme, two breeder blanket concepts are under development: HCPB (Li, Be) and HCLL (Li, Pb).

- Test modules of such breeding blankets will be tested in ITER, including nuclear tests that will provide the verification of tritium production (TPR), nuclear heating, decay heat and activation.
 - C/E for such quantities with the associated uncertainties will be obtained.
 - Conclusions will depend on C/E deviations compared with total uncertainties.
 - The value of ITER tests will depend on the narrowness of uncertainties, i.e., on the accuracy of the experimental and numerical tools available.

- Intermediate step: nuclear tests will be performed on breeder blanket mock-ups at FNG in 2003-2006 (possibly at JET in DT operations)
 - to test data and codes ⇒ reduction of calculation uncertainties
 - to develop and test experimental techniques to be applied in ITER ⇒ reduction of experimental uncertainties
CONCLUSIONS

- In the past ten years many experiments have been carried out at FNG that have provided important contributions to the improvement of the nuclear design of the fusion reactor.

- All these experiments were performed in collaboration with several EU teams, taking advantage of expertise disseminated in European laboratories and improving it for fusion development.

- Very useful collaborations were also established outside Europe, with RF and with JAERI (IEA).

- Following the strategy of the Fusion program, investigation is now moving from shielding issues to breeding issues.

 - efforts are focusing on preliminary experiments at FNG in preparation of breeder blanket tests in ITER.