ABSTRACT

Effect in Phase IOC of the US/IAEIR Collaborative Program on Fusion Neutronics was focused on performing integral experiments and post analyses on blankets that include the actual heterogeneities found in several blanket designs. Two proportional arrangements were considered, namely multi-layers of Li$_2$O and beryllium in an edge-on, horizontally alternating configuration for a front depth of 30 cm, followed by the Li$_2$O breeder zone (Be edge-on, BEO, experiment), and vertical water coolant channels arrangement in which one is placed behind the first wall and two other channels (width of 0.5 cm each) are placed at depths of 10 and 30 cm from the first wall (WCC experiment).

The objectives are to experimentally verify the enhancements in tritium production in the first experiment and to examine the accuracy of predicting tritium production and other reaction rates around these heterogeneities in the two experiments. In the BOE system, it was shown that, with the zonal method to measuring tritium production from natural lithium (T$_{1}^{n}$), the calculated-to-measured values (C/ME) are 0.95 ± 0.05 (IAEIR) and 0.98 ± 0.09 (U.S.), which is consistent with the results obtained in other Phases of the Program. In the WCC experiment, there is a noticeable change in C/E values for T$_{1}^{n}$ near the coolant channels where steep gradients in T$_{1}^{n}$ production are observed. The C/E values obtained with the Be-fuels to measure T$_{1}^{n}$ are better than those obtained by the Li-glass method. As for T$_{1}^{n}$ calculations and measurements by NE213 method are within ± 15% in IAEIR’s analysis, but larger values (~ 20-25%) are obtained in the U.S. analysis. Around heterogeneities, the prediction accuracy for T$_{1}^{n}$ is better than that for T$_{1}^{n}$. In both experiments, the prediction accuracy for high-threshold reactions (e.g., 3He(n,2n)2He) is within ± 10% as obtained by both Monte Carlo and Sn codes, however, it was shown that the Sn(He,2n) cross-section of ENDF/B-V should be increased by about 10% at high incident neutron energies to give better C/E values.

INTRODUCTION

Conceptual blanket design for fusion reactors includes a heterogeneous arrangement of more than one material that serves a particular function for efficient energy extraction. For solid breeder blankets, the inclusion of coolant and purge gas channels in the design causes considerable distortion in the neutron energy spectrum around these heterogeneities with a consequent impact on local tritium production and heating rates at these locations. In addition, the utilization of materials that have different neu- tronic characteristics (e.g., fast wall, multiplier, breeding material, etc.) also introduces local, and in some cases, sharp variation in the neutron spectrum at the interfaces of these materials. Often, designers follow a homogenization procedure in their calculational models, particularly when the blanket includes complex features of multi-components, in order to simplify the models used to predict the nuclear performance of the blanket and thus naturally leads to large uncertainties in the prediction of local effects and perhaps global quantities such as tritium breeding in a fusion blanket.

Two fusion-oriented integral experiments that focused on these heterogeneous effects were performed at the Fusion Neutronics Source (FNS) facility at Japan Atomic Energy Research Institute (JAERI) during the fall of 1998 and marked the completion of Phase IOC of the On-going US/IAEIR Collaborative Program on Fusion Neutronics. Phase I, Phase IIA and IIB experiments of this program were completed and the progress achieved during these phases were reported and/or published elsewhere (refs. 1-11). During these phases, several integral experiments were performed utilizing a 14 MeV point source and proceeded from a simple one-material (Li$_2$O) test assembly to a more prototypical one that includes the engineering features of a fusion blanket, e.g., First wall, multiplier, and coolant channels. Emphasis were placed in Phase IIA on studying the impact of using beryllium as a multiplier in different configurations (e.g. as a front layer or sandwiched between two Li$_2$O layers) on the neutron characteristics of the Li$_2$O test assembly, and in particular, on the tritium production profiles both locally and in central zones throughout the test assembly. I-10 Phase IIB configuration is similar to that of Phase IIA, except that beryllium was used as an inner layer (11-13) and thus acts as an armor material normally utilized on the inboard of a Tokamak reactor. Unlike the earlier Phase I experiments in which an open geometry was used (13-15), in Phase IIA, IIB, and IIC (the subject of this paper), the incident neutron spectrum on the test assembly closely simulates the incident neutron spectrum that is found in fusion reactors and that is due to the careful selection of materials (e.g., Li$_2$O, polyethylene (PE)) and configuration for these phases of the experiments.
In all these experiments, the prediction accuracies by using various codes and data libraries for key neutronics parameters, such as tritium production rate (TPR) from 6Li, (T), and 7Li, (T), are checked against the measured ones to arrive at estimates for the experimental and analytical uncertainties associated with these parameters. Tritium production rate (both locally and inside sources) is the prime focus in these phases with an attempt to extrapolate the estimated uncertainties to reactor conditions. This latter goal will be better achieved upon the completion of Phase III experiments started during the fall of 1989 in which a line source was simulated by the movement of the annular blanket back and forth relative to the stationary 14 MeV point source. The prediction accuracy for other parameters of importance for blanket designers such as nuclear heating and decay heat will also be emphasized in Phase III of this Collaborative Program.

In Section II, the experiments performed on heterogeneous effects in Phase IIC for which the analysis is given in this paper are briefly described. More detailed experimental data for these experiments can be found in a companion paper (Ref. 12). The calculational methods followed in analyzing these experiments are described in Section III, while the analytical results and comparison to the experimental data are given in section IV. Section V summarizes the main findings in this study along with recommendations for blanket designers.

II. THE EXPERIMENTS

The test assembly (Li$_2$O), for which the prediction accuracies for heterogeneous effects are examined, is placed at one end of a rectangular Li$_2$CO$_3$ enclosure of a 20 cm thickness (designated as a surrounding layer by a 5 cm-thick polyethylene (PE) layer) (See Fig. 1, Ref. 7). This layer maximizes the neutron room-reflected component that reach the test assembly. A water-cooled rotating neutron target (RNT) is used to generate the intense 14 MeV neutron source and is located in the inner cavity. The outer dimensions of the rectangular Li$_2$CO$_3$ assembly is 136 cm x 136 cm x 235 cm and is made of sintered blocks of various sizes. The two experiments considered are:

(a) The Water Cooled Channel (WCC) arrangement: In this experiment the water channels consisted of 5 mm thick polyethylene (to simulate water coolant) structured between two layers of S.S., each 0.7 mm thick. One coolant channel was placed behind a 5 mm thick SS FW and preceded the Li$_2$O test assembly (of thickness ~ 60 cm). Two other coolant channels were placed at a depth of 30 cm, and 35 cm, respectively, from the front surface of the assembly as shown in Fig. 1. This figure shows the geometrical details of the test assembly itself that is housed at one end of the Li$_2$CO$_3$ enclosure. The front rectangular surface of the test assembly has dimensions of 86.2 cm x 86.2 cm. A radial drawer was also installed horizontally, as shown in Fig. 1. These drawers have a cross-sectional area of 5.06 cm x 5.06 cm and they extend throughout the Li$_2$O assembly and the Li$_2$CO$_3$/PE layers.

(b) The multi-layered Beryllium Edge-On arrangement (BEO): In this experiment, multiple layers of Li$_2$O and beryllium were arranged in an edge-on, horizontally alternating configuration for a front depth of 30 cm followed by the Li$_2$O breeding zone (see Fig. 1). Two central drawers and one radial drawer (filled with Li$_2$O) were also installed in this experiment.

![Figure 1. Configurations of the test assembly in the coolant channel and the Beryllium edge-on experiments.](image)

The locations and the dimensions of the coolant channels in the WCC experiments have been chosen to be representative of channels found in a typical fusion blanket. The multi-layer arrangement of Be/Li$_2$O in the first 30 cm of the BEO experiment has also been chosen after extensive pre-analysis aimed at examining the optimal arrangement of equal volumes of beryllium and Li$_2$O in a front zone of thickness 20-30 cm that gives the largest tritium production rate. It was shown that the intermixing of horizontal Be and Li$_2$O layers in an edge-on arrangement is superior to the vertical arrangement of alternating Be and Li$_2$O layers as far as the TPR is concerned. This is an important feature to be considered by blanket designers.

The TPR from 6Li(T$_0$) was measured by Li-glass detectors along the central drawer in the WCC and BEO experiments. It was also measured by Li-foil detectors along the central drawer in the WCC experiment using 7Li-enriched and Li natural (7Li) foils. In the BEO experiment, 7Li-enriched foils were used in the central drawer while Li-foil foils were utilized in the off-central drawer to measure T$_0$ and T$_1$. The NE213 detectors were also used to measure T$_0$ along the central drawer in both the WCC and BEO experiments by folding the measured spectrum with the response 7Li,7Li,n,3He cross-section (indirect method). In addition to 6Li TPR measurements, zonal tritium production rates were measured in pre-designated blocks along the central drawer (7Li-enriched blocks) and the off-central drawer (7Li-blocks) in the BEO system.
The in-system spectrum measurements were performed by using small spherical NE133 detectors in the energy range $E_n > 1$ MeV and by using small size proton recoil counters (PRC, H3, and H4/AL2O3) in the energy range 1 keV < E_n < 1 MeV. These measurements were taken along the central axis in the WCC experiment (NE133 measurements) and the BEO experiment (both NE133 and PRC measurements).

Foil activation monitor-measurements along the off-center drawer in the WCC experiment were performed for the reactions 58Ni(n,2n)58Ni(n,3n)58Ni(n,4n)58Ni(n,x)58Ni, 115In(n,x)115In, and 197Au(n,y). Except for the 197Au(n,y) reaction, these reactions have threshold energies E_n of ~ 9 MeV, ~ 7 MeV, ~ 10 MeV, ~ 0.5 MeV, and ~ 6 MeV, respectively. Because of the difference in these threshold energies, comparison between measurements and calculations for these reactions provides useful information on the neutron spectrum inside the Ly/H2 assembly and complements the NE133 and proton recoil measurements. These reactions were also measured in the BEO system along the central drawer in addition to the 10B(n,x)11Be, 11B(n,x)12C, and 11B(n,x)12C reactions. Because the 197Au(n,y) reaction occurs at all energies, this reaction was used to infer the degree of accuracy in predicting T_n which has a substantial component at low energies. In the BEO system, vertical distribution of this reaction was measured at the front surface of the Be/Li2O layers and at a depth of ~ 10 cm. This mapping was made to indicate the variation in the low-energy component of the neutron flux as one moves alternatively between the Be and Li2O layers. Details of the measurements performed in this phase can be found in Ref. 12.

III. CALCULATIONAL METHODS

In analyzing the WCC experiment, both deterministic and Monte Carlo methods were independently used by the U.S. and JAERI. Monte Carlo codes were used in analyzing the BEO experiment. The MCNP code (Version 3B) was used by the U.S. along with its point wise cross section energy/angle cross-section library RMCBC/BMCCS based on ENDF/B-V, version 2.2 data. The MORSE/OD code was used by JAERI and it utilizes the ENDF/B-V cross-section library DDL/J3P1. (125 neutron groups) based on JENDL3P1 data base. The codes used by the U.S. in the 2-D Sn method were DOT 5.1 in conjunction with the first collision code, RUFF. (23) It was necessary to use the RUFF code since in the 2-D Sn code, the variable mesh feature is used as in the case of the U.S. calculations. The DOT 5.1 is an advanced version of the DOT 4.3 code. (23) In JAERI's calculations, the DOT 3.2 (24) and GRTUNCL codes were used. In the 2-D calculations, the RUFF and GRTUNCL codes were necessary in order to mitigate the ray effects in the discrete ordinates code when applied with an external point source. In the U.S. calculations, the P3-S' approximation was adopted and the MATXS6 library (80 g) was used which was previously generated using the TRANSX-CTR processing code (25) and is based on ENDF/B-V version 2. The FKKHP library (P3, 125 g) was used in JAERI's calculations and is based on JENDL3P1.

The dimensions as adopted in the calculations for the two experiments are shown in Figure 2 (shown are the inner dimensions of the cavity and the test assembly). It was necessary to calculate the angular and energy distribution of the incident neutrons using the Monte Carlo method to account for the complex nature of the rotating neutron target. These calculations were previously discussed (23-25). The calculational procedures and modeling are very similar to those used in Phase IIA and IIB and more details can be found in Refs. 4, 6, 8, 10, and 11. For example, Figure 3 shows the 2-D R-Z model used in the DOT 5.1 calculations for the WCC experiments where part of the target is shown. The energy and angular distribution of neutrons produced at the beam spot $r = 0.0$ has been calculated based on the formula of Benveniste et al. (26) and on the D-T kinematics of the corresponding D-D beam energy. The atomic densities of materials used in the WCC experiments are given in Table 1.

![Figure 2](image-url) - Inner Dimension (Coldwall-Blanket Experiment)

IV. ANALYTICAL RESULTS AND COMPARISON WITH EXPERIMENTAL VALUES

IV.A. Coolant Channels' Experiment (WCC)

The introduction of coolant channels behind the first wall and inside the Li2O assembly tends to appreciably soften the neutron spectrum inside and around them due to neutron moderation by the coolant. Consequently, reactions that are sensitive to the low-energy component of the neutron spectrum are noticeably large around these heterogeneities. The pre-analysis (23) for the selection of the configuration for this experiment had indicated an increase in T_n by as much as a factor of 2 - 3 in zones around coolant channels in comparison to the case where no channels are deployed. In the WCC experiment, the T_n profiles are very site near the boundaries of the Li2O/WCC with a local increase by a factor of 4 - 6. Since T_n is only sensitive to the high-energy component of the neutron spectrum, these sudden changes in local values do not occur in the T_1 profile.

FUSION TECHNOLOGY VOL. 16 MAY 1991 1893
Table 1: Atomic Densities (x10-24) of Materials Used in the 2D Calculational Model for the Coolant Channel Experiment(+)

<table>
<thead>
<tr>
<th>Element</th>
<th>Inner Li2O (Drayer)</th>
<th>Outer Li2O</th>
<th>S.S. between Inner and Outer Li2O</th>
<th>FW</th>
<th>S.S. Coolant Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>4.4666*</td>
<td>1.992-3</td>
<td>2.514-2</td>
<td>6.00-2</td>
<td>5.90-2</td>
</tr>
<tr>
<td>C</td>
<td>3.196-4</td>
<td>3.267-4</td>
<td>6.926-3</td>
<td>1.82-2</td>
<td>5.314-2</td>
</tr>
<tr>
<td>N</td>
<td>2.937-4</td>
<td>2.752-5</td>
<td>5.505-5</td>
<td>7.345-5</td>
<td>8.336-5</td>
</tr>
<tr>
<td>Mo</td>
<td>1.048-5</td>
<td>1.237-5</td>
<td>2.387-4</td>
<td>4.424-4</td>
<td>9.93-4</td>
</tr>
<tr>
<td>Li</td>
<td>4.120-3</td>
<td>4.213-3</td>
<td>8.319-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>1.734-2</td>
<td>1.750-2</td>
<td>3.485-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>1.215-2</td>
<td>1.402-2</td>
<td>2.620-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>1.357-3</td>
<td>1.175-3</td>
<td>2.532-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>1.048-5</td>
<td>1.237-5</td>
<td>2.387-4</td>
<td>4.424-4</td>
<td>9.93-4</td>
</tr>
</tbody>
</table>

* Rates 4.856 x 10^14
* PE contact layer H: 2.207-2, C: 4.128-2
* PE interlayer H: 8.146-2, C: 4.073-2

IV-A-1 In-System Neutron Spectrum

The neutron spectrum was measured at several locations along the axis of the central drawing using NE213 detectors. Figs. 4 shows a comparison of the calculations (IAERI, MORSE-DD and DOT 3.5 U.S.: MCNP and DOT 5.1) and measurements (NE213) at a depth 8.7 cm from the front surface of the Li2O assembly (located behind the FW/WCC) and at a distance of 76.87 from the Z axis (neutron source). The Monte Carlo results were smeared using the NE213 windows. As shown, the spectrum between 2 - 10 MeV is larger in the calculations than those obtained by measurements. NE213 results have large statistical errors below 2 MeV. This is shown in Fig. 5, where the calculated-to-experimental values (C/E) for the integrated spectrum in the energy range 2.05 eV < E < 0.1 MeV are shown along the central axis. Along this axis, the C/E values obtained by the deterministic methods are very similar (C/E = 1.3 - 1.4) but the values obtained by the MORSE-DD/IAP (C/E = 1.4 - 1.1) and MCNP/PRC/MCCS (C/E = 1.02 - 1.4) are different and have space-dependence. The statistical errors shown on the Monte Carlo results in this figure and in all subsequent figures are the combined calculational and experimental errors. These errors are larger and are overestimating at most of the locations. The C/E for the integrated spectrum above 10.1 MeV is shown in Fig. 6, where the values are better than those shown in Fig. 5 (C/E = 0.9 - 1.1, except at deep locations with the Monte Carlo calculations). The DOT3.5 calculations (IAERI) give C/E values closer to unity and are lower than those obtained by the DOT 5.1/MATXS6 (U.S.) by ~ 10%. Notice that the 13.5 MeV peak is overestimated by DOT 3.5 at front locations (See Fig. 4) although the integrated spectra above 10 MeV are lower than those obtained by the NE 213 measurements. Also, notice that the C/E values obtained by MORSE-DD calculations are lower than unity at all locations and also lower than the MCNP results. This is due to the lower spectrum above 10 MeV predicted by MORSE as compared to those obtained by MCNP as shown in Fig. 4.

Figure 3. The 2D R-Z model of DOT 5.1 calculations (WCC Experiment).

Figure 4. Measured and calculated neutron spectra at Z=8.7 cm (WCC experiment).
Figure 5. The C/E values for the integrated spectrum, 2.05 MeV+En=10.1 MeV along the central axis (WCC experiment)

Figure 6. The C/E values for the integrated spectrum, En=10.1 MeV along the central axis (WCC experiment).

IV.A.2 Tritium Production and Other Reaction Rates

The C/E values for Tt, where measurements are performed by the NE213 indirect method, are shown in Fig. 7. The value obtained by the U.S. (C/E = 1.1 - 1.25) is generally larger than those obtained by JAERI (C/E = 0.9 - 1.15). The features of the curves shown relative to each other in the first 15 cm or so are similar to those shown in Fig. 6 but are shifted upward by ~ 10%. The similarity in the relative values is due to the fact that most of the contribution to Tt at these front locations is due to neutrons above 10 MeV. The 10% shift could be due to the 7Li(n, n'p) cross-section of JENDL3/PRI used in folding the NE213 measured spectrum to estimate Tt. It was previously shown, from direct comparison between the JENDL3/PRI cross-section for 7Li(n, n'p) and Young's evaluation (37) used in the U.S. calculation, that the factor is lower than the latter by ~ 8 - 10%. Thus the experimental values obtained by NE213 method could be lower than what they should be which leads to the upward shift in the C/E values. This is supported by the fact that the Tt measurements by the Li-foil technique are indeed lower than the NE213 measurements by ~ 10% throughout the test assembly and the C/E values in this case are closer to unity (not shown) than those shown in Fig. 7. The Li-foil technique requires long irradiation while the NE213 measurements are performed on-line.

Figure 7. The C/E values for Tt measured by NE213 detectors along the central axis (WCC experiment).

The C/E values for the high-threshold reaction 38Nb(n, 2n) (E_\text{n} = 12.5 MeV) are shown in Fig. 8, where the U.S. values obtained by DOT 5.1 and MCNP are generally lower than unity by ~ 20 - 30% (except at few places in the middle of the test assembly in the MCNP calculations where the statistical errors are large). It was pointed out in Ref. 37 that the 90Zr(n, 2n) cross-section as currently implemented in ENDF/B-V should be increased by ~ 25 - 30%. This would bring the C/E values closer to unity and to those obtained by JAERI.

The calculation for other high-threshold reactions are in general in good agreement with the measurements. The C/E for the 90Zr(n, 2n) 92Zr(Nb) (E_\text{n} = 8 MeV) are ~ 0.9 - 1.0 except at few locations toward the back of the assembly. The C/E values for 57Fe(n, α) 54Mn (E_\text{n} = 6 MeV) are ~ 0.95.
Figure 8. The CJE values for $^{58}\text{Ni}(n,2n)^{57}\text{Ni}$ reaction rate along the off-central axis (WCC experiment).

Figure 9. The CJE values for $^{197}\text{Au}(n,\gamma)^{198}\text{Au}$ reaction rate along the off-central axis (WCC experiment).

Figure 10. The CJE values for ^{64}Zn measured by Li-glass detectors along the central axis.

IV.B. Beryllium Edge-On Experiment (BEO)

Arranging beryllium and Li$_2$O layers in an edge-on configuration resulted in a substantial increase in the...
TPR throughout the LiO\(_2\) layers. The pre-analysis indicated an increase of ~ 30% in the global tritium breeding ratio (TBR) in comparison to the case when no Be is introduced in the assembly. Local TBR from \(\text{Li}_2\text{Li}(\text{Be})\) in the mixed zone (of depth 30 cm) increased by a factor of 3 in the central drawer as compared to the non-Be case (the reference experiment in phase IIA, see Refs. 3.6, and 3). This is due to the enhancement in the neutron population in the adjacent Be layers through \(\text{Be}(\text{n},2\text{n})\) reactions. T\(_c\) also increased in the mixed region by ~ 8% but local values decreases thereafter by ~ 10% in comparison to the non-Be case.

The emerging neutrons from the Be layers to the \(\text{Li}_2\text{O}\) layers have a noticeably large low-energy neutron component. Reactions that are sensitive to this component exhibit a depression at the center of the \(\text{Li}_2\text{O}\) layers with gradual increase towards the \(\text{Be}/\text{Li}\) boundaries. Flux mapping of the low-energy neutrons was performed by \(^{197}\text{Au}(\text{n},\gamma)\) foil activation measurements in the vertical direction at the front face of the assembly and at a depth of 10 cm. The reaction rates get larger inside the Be layers and drop inside the \(\text{Li}_2\text{O}\) layers as one traverses these layers from bottom to top. The C/E values for this reaction at a depth of 10 cm are shown in Fig. 12 where the calculations were performed by MORSE-DD J31P (JAERI). A large deviation can be observed in the order of 40% in the central layers while a deviation by a factor of 1.6 - 2.6 can be observed in the upper and lower most \(\text{Li}_2\text{O}\) layers. The statistical errors in the Monte Carlo calculations (not shown) are large. The error bars shown in figure 12 are the experimental errors only.

![Figure 11. The C/E values for T\(_c\) measured by two detect types along the central axis (WCC Experiments).](image)

Table II: Calculated-to-Experimental Values for T\(_c\) Along the Central Axis in the Water Coolant Channel Experiment (Measurements by Li-glass detectors)

<table>
<thead>
<tr>
<th>Position</th>
<th>(Z(\text{cm}))</th>
<th>Measured Value</th>
<th>Experimental Error (%)</th>
<th>U.S.</th>
<th>C/E Values</th>
<th>JAERI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DOT 3.5</td>
<td>MUNP</td>
<td>S.E.(%)</td>
</tr>
<tr>
<td>1</td>
<td>2.40</td>
<td>1.107 - 2.49</td>
<td>4.09</td>
<td>3.116</td>
<td>1.018</td>
<td>5.86</td>
</tr>
<tr>
<td>2</td>
<td>4.93</td>
<td>9.388 - 2.9</td>
<td>11.82</td>
<td>1.031</td>
<td>1.006</td>
<td>12.57</td>
</tr>
<tr>
<td>3</td>
<td>10.87</td>
<td>1.867 - 2.4</td>
<td>4.14</td>
<td>1.232</td>
<td>0.881</td>
<td>7.53</td>
</tr>
<tr>
<td>4</td>
<td>11.85</td>
<td>9.529 - 2.9</td>
<td>3.78</td>
<td>1.092</td>
<td>1.071</td>
<td>7.69</td>
</tr>
<tr>
<td>5</td>
<td>13.15</td>
<td>7.136 - 2.9</td>
<td>4.32</td>
<td>1.001</td>
<td>1.001</td>
<td>6.31</td>
</tr>
<tr>
<td>6</td>
<td>14.41</td>
<td>6.399 - 2.9</td>
<td>8.69</td>
<td>1.061</td>
<td>0.906</td>
<td>9.56</td>
</tr>
<tr>
<td>7</td>
<td>15.68</td>
<td>5.180 - 2.9</td>
<td>8.36</td>
<td>1.095</td>
<td>1.099</td>
<td>9.31</td>
</tr>
<tr>
<td>8</td>
<td>16.21</td>
<td>4.480 - 2.9</td>
<td>5.04</td>
<td>1.038</td>
<td>0.969</td>
<td>6.82</td>
</tr>
<tr>
<td>9</td>
<td>20.74</td>
<td>3.371 - 2.9</td>
<td>6.27</td>
<td>1.194</td>
<td>1.142</td>
<td>7.72</td>
</tr>
<tr>
<td>10</td>
<td>32.14</td>
<td>2.297 - 2.9</td>
<td>4.44</td>
<td>1.105</td>
<td>0.916</td>
<td>8.80</td>
</tr>
<tr>
<td>11</td>
<td>36.176</td>
<td>2.132 - 2.9</td>
<td>4.37</td>
<td>1.090</td>
<td>1.024</td>
<td>8.42</td>
</tr>
<tr>
<td>12</td>
<td>41.82</td>
<td>1.472 - 2.9</td>
<td>5.40</td>
<td>1.040</td>
<td>1.113</td>
<td>9.6</td>
</tr>
</tbody>
</table>

* Measured from the front edge of the \(\text{Li}_2\text{O}\) located behind the FW/PE layer. This edge is at a distance of 76.87 cm from D-T point source.

Reads \(1.07 \times 10^{28} \) + \(\sqrt{\text{Experimental error}}^2 + \text{Monte Carlo Statistical error}}^2\)

1897
although the calculations slightly larger values. The 14 MeV peak is underestimated and this is more noticeable as one proceeds toward the back locations. Figs. 14 and 15 show the C/E values for the integrated spectrum above 0.1 MeV and in the energy range 2.05 MeV<En<10.1 MeV, respectively as obtained by the U.S. and JAERI. The high energy component of the spectrum above 10.1 MeV is lower than the measured one by ~ 8-20% with large discrepancies occurring towards the back end of the assembly. On the other hand, the calculated spectrum in the energy range 2.05 MeV<En<10.1 MeV is larger than the measurements by 40-55% with large discrepancies occurring at the front locations. These features are different from those shown in Figs. 5 and 6 in the WCC experiment and could be related to the beryllium data. It was discussed previously that the secondary neutron spectrum form the 8Be(n,2n) reactions is overestimated in the energy range 2-10 MeV and underestimated above 10 MeV. Neutrons interacting inside the Be layers and emerging to the Li2O layers have a spectrum that is underestimated above 10 MeV, as shown in Fig. 14 while overestimation in the energy range 2-10 MeV is more pronounced at the front locations where more 8Be(n,2n) reactions take place at the front of the mixed zone.

Figure 12. The C/E values for 197Au(n,y)198Au reactions at a depth of 10 cm inside the test assembly (BOE experiment).

IV B.1. In-System Spectrum Measurements
In-system spectrum measurements by NFI23 were performed at depths of 1.2, 6.2, 11.3, 21.5, 26.1, 31.6, 41.7, 51.8, and 72.1 cm along the axis of the central and a depth of 11.3 cm (in the mixed zone) on the central axis. The agreement is reasonable in the energy range 2 - 10 MeV.

Figure 13. Measured and calculated neutron spectra (BOE experiment)

Figure 14. The C/E values for the integrated spectra, En=10.1 MeV along the central axis (BOE experiment).

IV B.2. Tritium Production and Other Reaction Rates
The combination of the understimation of the neutron spectrum above 10 MeV and overestimation in the energy range 2-10 MeV is reflected on the C/E values for T3, as shown in Fig. 16. In comparison to the corresponding values in the WCC experiment, (See Fig. 7), the values shown in Fig. 16 have a decreasing trend as one moves to the back locations. The prediction accuracy in this case is within ±10% and the U.S. values are on the average larger than those obtained by JAERI by ~10% although there is an overlapping among the statistical errors in the Monte Carlo calculations at all locations.
results. The 58Ni(n,p) ($E_n = 2$ MeV) and 13N(n,n')15Na reactions ($E_n = 1$ MeV) have C/E values that are within $\pm 7\%$ and $\pm 10\%$, respectively. The C/E values for the 27Al(n,2n)24Na reactions ($E_n = 6$ MeV) are shown in Fig. 17 where they are also within $\pm 10\%$. It was noticed that the C/E curves for these threshold reactions tend to have a decreasing trend towards the back locations as does the C/E curve for the integrated spectrum above 10 MeV. The agreements among the U.S. and JAERI calculations and the measured values for 17F(n,x)19F and 17F(n,x)17O and 17F(n,x)19F are not as good as for other reactions and is basically due to differences in the cross-section values used by JAERI and the U.S.

The C/E values for 24Na reaction rate along the central axis (BEQ experiment). Fig. 18 shows the C/E values for 17F(n,x)19F where they are $\leq 5\% - 6\%$ in the U.S. calculations while, on the average, are larger than unity (C/E = 1 - 1.1) in JAERI's results. This reaction includes both the 24Ti(n,p)24Sc and the 44Ti(n,p)46Sc channels where the cross-sections are weighted by the natural abundance of 44Ti and 44Ti. Likewise, the C/E values for 17F(n,x)19F reactions are lower in the U.S. calculations by as much as 2-30% than those obtained by JAERI/C/E = 1.00 with a large divergence occurring at the front locations. On the other hand, the C/E values are larger in the U.S. Calculations for the 17F(n,x)19F reaction by $\sim 25\%$ than those obtained by JAERI/C/E = 1.02.

The C/E values for 18O as measured by the Li-glass detectors are shown in Fig. 19. In comparison to Fig. 10, the values are more or less steady along the central axis with no abrupt changes in shape. The values obtained by the U.S. are generally larger (C/E = 0.8--1.05). In comparison to the no Be case (Reference case in phase IIA experiments, see Ref. 8), the C/E values are generally lower than unity by $\sim 5\% - 10\%$ while in the no Be case the C/E values are generally larger than unity by $\sim 7\% - 10\%$. This could be again related to the beryllium data and/or to the flux perturbation caused by
Figure 18. The C/E values for \(T(n,\alpha)\) reaction rate along the central axis (BEO experiment).

Figure 19. The C/E values for \(T_\text{m} \) measured by Li-glass detectors along the central axis (BEO experiment).

The finite size of the Li-glass detectors used to measure \(T_\text{m} \) in a softer spectrum as is the case in the BOE experiment.

As mentioned earlier, the TPR was also measured in predesignated zones along the central drawer (5.06 x 5.06 x 60 cm). Fig. 20 shows the C/E values from \(T_\text{m}(T_\text{m}) \) where the various axial distances for these zones can be inferred from Figure 20. The values are within \(\pm 5\% \) up to a depth of 4.5 cm. Therefore, the C/E values for larger depth unity by \(\sim 10\%-20\% \) (the statistical errors in the back zones are as large as 20\%). The C/E values for \(T_\text{m} \) measured by this annular technique are lower than unity in all zones by \(\sim 5\%-15\% \) (not shown).

Figure 20. The C/E values for zone \(T_\text{m} \) along the central drawer (BEO experiment).

V. SUMMARY

The coolant channels (WCC) and the beryllium edge-on (BEO) experiments were specifically chosen for Phase IIC in order to examine the prediction capabilities for lithium production, in-system spectra, and other reactions rates in systems that are characterized by design heterogeneities representative of various blanket designs. Comparisons were made to measurements and to results from previous phases of the experiments. In general, it was found that, even with system heterogeneities, the present codes and data libraries can reasonably predict the neutronics parameters with no specific difficulties. For high-threshold reactions (e.g., \(^{13}\text{N}(n,2n) \), \(^{93}\text{Nb}(n,2n)\) , \(^{95}\text{Mn} \), etc.) the prediction accuracies are within \(\pm 5\%-20\% \) in the WCC and within \(\pm 10\% \) in the BEO system. For these reactions, it was observed that there is a systematic difference between the Monte Carlo and the Sr method used to analyze the WCC system. In addition, the calculated-to-experimental (C/E) curves tend to decrease in the back region in both assemblies, particularly in the Monte Carlo calculations of the WCC system. For the threshold reactions, the results are consistent with previous phases (Phase IIA and IIB) although the C/E values tend to fall between the values obtained in these phases (C/E: IIB-III-CADNA) up to a distance of \(\sim 30 \) cm in the test assembly of the BEO system. The results show that the \(^{58}\text{Ni}(n,2n) \) cross-section as currently implemented in ENDF/B-V (U.S.) should be increased by \(\sim 5\%-30\% \) to improve agreement with the experimental values. Also, the activation cross-section for \(^{58}\text{Ni}(n,p) \) should be increased in the ACTI library (U.S.) by \(\sim 20\% \).
The prediction accuracy for T_4 in the WCC system was ±15% in the JAERI calculations but a larger divergence was found in the U.S. calculations (C/E = 1.1-1.25) when the NE213 indirect method was used. Closer values to unity were obtained in the BEO system (C/E = 0.9-1.1). The results obtained by the Li-foil measurements were better than those obtained by the NE213 method where improvements in the range of 10% is achieved. When point methods were applied to measure T_5, it was found that the C/E values are lower than unity by ~2-15% while TPR from natural lithium (T_5) is ±5% up to a depth of 45 cm in the BEO system.

Unlike the threshold-reaction, the T_4 and 17O(n,γ) reactions exhibit steep profiles around the coolant channels in the WCC system while the 17O(n,γ) reaction shows large drops and increases as one vertically traverses the BeO/Li$_2$O layers in the BEO system. The C/E curves for T_4 and 17O(n,γ) were not as flat as those for the high-threshold reactions when heterogeneities were crossed and gradients occurred near them. The divergence in the calculations for T_4 around heterogeneities was about ±20-25% (Li-glass detectors were used) and was ±25-30% for 17O(n,γ) in the WCC system. With Li-foil detectors, the C/E values were improved by ~10-15%. In the BEO, the C/E values for T_4 were always lower than unity where measurements were performed with Li-glass detectors. This could be related to the beryllium data since it was observed (as in the case in the other phases) that predictions were lower than measurements near BeO/Li$_2$O boundaries. There are indications that the emission spectrum from the 8Be(n,2n) reactions was underestimated below 0.5 MeV5 and this could partly explain the lower values for the C/E curves for T_4 in the BEO system. The discrepancy could also be due to the neutron gradients of the Li-glass detector itself when used to measure T_4 in a soft spectrum. This study also showed that there are differences in the Tin (n,γ)5 reactions and the C/E values of the JENDL3 and ENDF/B-V evaluations that should be closely examined.

REFERENCES

(19) LOS ALAMOS MONTE CARLO GROUP, "MCNP,- A General Monte Carlo Code for Neutron and Photon