Reprocessing of Lithium Orthosilicate Pebbles

Regina Knitter, Birgit Löbbecke (née Alm)

Research Center Karlsruhe
Institute for Materials Research III
Objective

Reprocessing of OSi pebbles by remelting

Remelting of pebbles with a decreased Li content to simulate chemical composition after ^6Li burn-up

Assumption for DEMO end of life burn-ups:
- 50 \% ^6Li enrichment will be used
- 15 \% ^6Li burn-up will occur

Changes in the chemical composition:
- SiO_2 surplus: 2.5 wt\% → 6.4 wt\%
- Li_2SiO_3: 10 mol\% → 24 mol\%
Fabrication Campaign Dec. 05/Jan. 06

3 batches of reference material

4 batches of ‘burn-up‘ material with a lower Li content

3 batches of remelted material (‘burn-up‘ material + LiOH)

1 batch ‘burn-up‘ material

Characterisation was carried out in the initial state and after conditioning at 970°C for 1 week ➔ Quality control of 14 samples
Chemical Analysis

Batch

<table>
<thead>
<tr>
<th></th>
<th>reference</th>
<th>remelted</th>
<th>‘burn-up‘</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂ surplus (a) / wt%</td>
<td>2.5</td>
<td>2.4</td>
<td>6.3</td>
</tr>
<tr>
<td>initial: Li₆Si₂O₇ / mol%</td>
<td>11</td>
<td>10</td>
<td>31</td>
</tr>
<tr>
<td>cond.: Li₂SiO₃ / mol%</td>
<td>10</td>
<td>9</td>
<td>23</td>
</tr>
<tr>
<td>Impurities (b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C / ppm</td>
<td>610 ... 650</td>
<td>510 ... 640</td>
<td>770</td>
</tr>
<tr>
<td>Al / ppm</td>
<td>17 ... 26</td>
<td>68, 37, 23</td>
<td>17</td>
</tr>
<tr>
<td>Co / ppm</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>Pt / ppm</td>
<td>71 ... 83</td>
<td>93 ... 121</td>
<td>55</td>
</tr>
</tbody>
</table>

(a) calc. from analysis by Schott; (b) FZK-IMF I

60 ppm Al + 4 ppm Co

→ 50-100 years wait time for hands-on recycling

(Fischer & Tsige-Tamirat, J. Nucl. Mater. 2002)
Microstructure (surface)

- **Reference**: OSi 06/1-1...1-3
- **Remelted**: OSi 06/3-1...3-3
- **‘Burn-up’**: OSi 06/2-1

For each category, there are images of particle sizes.

- **Diameter** $d_{50} \approx 300 \, \mu m$
Microstructure (cross section)

Phase Diagram Li$_2$O – SiO$_2$

![Image of phase diagram and micrographs](image_URL)
Microstructure (surface) cond.

- **Reference**: OSi 06/1-1...1-3 c
- **Remelted**: OSi 06/3-1...3-3 c
- **‘Burn-up’**: OSi 06/2-1 c
Microstructure (cross section) **cond.**

Reference
- OSi 06/1-1...1-3 c

Remelted
- OSi 06/3-1...3-3 c

Burn-up
- OSi 06/2-1 c
Physical Properties

<table>
<thead>
<tr>
<th>Batch</th>
<th>reference</th>
<th>remelted</th>
<th>‘burn-up‘</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSi 06/1-1...1-3</td>
<td>cond.</td>
<td>cond.</td>
<td>cond.</td>
</tr>
<tr>
<td>He-pycnometry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>closed porosity / %</td>
<td>0.6</td>
<td>0.4 ... 0.6</td>
<td>0.5 ... 0.8</td>
</tr>
<tr>
<td>OSi 06/3-1...3-3</td>
<td>cond.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>density / %</td>
<td>95 ... 96</td>
<td>95</td>
<td>94 ... 95</td>
</tr>
<tr>
<td>open porosity / %</td>
<td>3 ... 4</td>
<td>3</td>
<td>3 ... 4</td>
</tr>
<tr>
<td>Specific surface area / m²/g</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Crush load / N</td>
<td>6 ... 7</td>
<td>5 ... 7</td>
<td>6 ... 8</td>
</tr>
</tbody>
</table>

TD (OSi) = 2.40 g/cm³

[2.42 g/cm³]
Conclusions

Reprocessing of OSi by remelting of chemically simulated ‘burn-up‘ pebbles

- no detectable differences in properties or microstructure compared to reference material
- variation of properties from batch to batch is larger than due to remelting

Pebbles with a higher surplus of SiO₂ (‘burn-up‘) exhibit
- a fine-grained microstructure
- a lower crush load in the initial state
- but this cannot be transferred to irradiated material!
Conclusions

Outlook

Reprocessing of irradiated OSi pebbles by remelting

No wet chemical reprocessing to recycle 6Li
But no removal of activated elements

Further decrease of impurities by using ultra pure raw materials
→ Reduction of wait-time for reprocessing

Acknowledgement

G. Räke et al., Schott AG
C. Odemer, B. Wagner, M. Offermann, IMF III
R. Rolli et al., IMF II
Dr. C. Adelhelm et al., IMF I