Overview of
ITER Test Program

ITER Team

Presented by
Mohamed A. Abdou

Presented at the 9th Topical Meeting on the Technology of
Fusion Energy
Oak Brook, Illinois
October 7-11, 1990
OBJECTIVES OF ITER TEST PROGRAM

- Screening of concepts that require integrated fusion environment

- Calibration of fusion tests to results from non-fusion facilities

- Validation of blanket concepts for DEMO

- Testing of advanced concepts e.g.:

 Low activation
 Inherent safety

Powerful, albeit limited, demonstration of fusion potential
FNT TESTING REQUIREMENTS

- Major Parameters of Device
 - Device Cost Drivers
 - Major Impact on Test Usefulness
- Engineering Design of Device e.g.,
 - Access to Place, Remove Test Elements
 - Provision for Ancillary Equipment
 - Accommodation of Failures in Test Elements
\(\gamma - \text{LiAlO}_2 \)

Tritium Diffusion Time Constant Uncertainty Band for Grain of Radius 0.1 \(\mu \text{m} \).

Thermal Diffusion Time Constant for a Diffusion Length of 0.5 cm.
Fluence Goals

Device fluence (at first wall) is a factor of 2 larger than fluence received at the test module

Device Fluence (MW·y/m²)

\[I_d = P_{nw} \cdot A \cdot t_d \]

Fluence at the Test Module (MW·y/m²)

\[I_m = P_{nw} \cdot A \cdot t_m \cdot T \]

Why \(I_d > I_m \) (typical: factor of 2)

- \(t_d > t_m \)
 - Sequential tests required for scoping \(\rightarrow \) verification
 - Also, failure and replacement of test modules
- \(T < 1 \)
 - Attenuation through PfC, first wall
EXAMPLES OF KEY FNT ISSUES REQUIRING
SUBSTANTIAL FLUENCE

- Mechanical Interactions
e.g., Solid Breeder/Clad Interactions
- Tritium Inventory in Solid Breeders
- Burnup Effects on Chemistry, Compatibility and Breeding
- Corrosion/Redeposition
- Failure Modes, Rates
A2: Fluence-Related Effects In Solid Breeders and Insulators
EXAMPLE OF BENEFIT VS. FLUENCE

MECHANICAL INTERACTION BETWEEN SOLID BREEDER/MULTIPLIER AND STRUCTURE
HT-9/Li_2O/Ho

- - - - COMBINED UNCERTAINTY
- - - - DERIVATIVE

COMBINED UNCERTAINTY FOR GOAL EXPOSURE OF 10 MW·yr/m^2

DERIVATIVE OF COMBINED UNCERTAINTY PROJECTION (MW·yr/m^2)^{-1}

EQUIVALENT NEUTRON EXPOSURE (MW·yr/m^2)
Fig. 2.6.1 Test Port Allocation to Helium- and Water-Cooled Solid Breeder Blankets
Ancillary Equipment for Test Modules

e.g. - Heat rejection system
- Tritium recovery systems
- Coolant and purge fluid storage
- Hot cells and PIE

- Extensive requirements on ITER configuration and maintenance