OVERVIEW OF TRITIUM BREEDING
PROBLEMS AND EFFORTS

Mohamed A. Abdou
UCLA

Presented at the
6th Topical Meeting on the Technology of Fusion Energy
San Francisco
March 3-7, 1985
\[\Lambda_r = 1 + G_0 + \Delta_G \]

\(G_0 \) = doubling time margin for a reference conceptual design

\(\Delta_G \) = uncertainty associated with \(G \)

Model

- Model was formulated and used to evaluate dependence of \(\Lambda_r \) on reactor parameters.

- Methods for estimating \(\Delta_G \) are under development. Initial results are available.
TRITIUM BREEDING PROBLEM

- A part of DT fuel self-sufficiency issue

- Self-sufficiency condition:

 \[\Lambda_r = \text{Required tritium breeding ratio} \]

 \[\Lambda_a = \text{Achievable breeding ratio} \]

 \[\Lambda_r > \Lambda_a \]

- Key question:

 Magnitude of uncertainties in \(\Lambda_r, \Lambda_a \)

 - Conventional types of uncertainties

 - Unconventional type
Schematic model of the fuel cycle for a DT fusion reactor used in the present work.

- Plasma Exhaust Processing I_6, T_6
- Limiter Coolant Processing I_7, T_7
- First Wall Coolant Processing I_8, T_8
- Breeder Processing I_2, T_2
- Water, Steam and Air Processing (I_9, T_9)

Flows and Processes:
- \dot{N}^-/β
- ϵ_6
- $\lambda \epsilon_7$
- $\lambda \epsilon_8$
- $\lambda \epsilon_2$
- $\lambda \epsilon_4$
- $\lambda \epsilon_3$
- i_9
- $\Lambda \dot{N}^-$
- $f_F \dot{N}^-/\beta$
- $f_L \dot{N}^-/\beta$
- $1 - f_c$
- f_c
\[\Lambda = \text{tritium breeding ratio} \]

\[\dot{N}^- = \text{tritium burn rate in the plasma} \]

\[I_i = \text{tritium inventory in compartment } i \]

\[T_i = \text{tritium mean residence time in compartment } i \]

\[\varepsilon_i = \text{nonradioactive loss of tritium in compartment } i \]

\[\lambda = \text{tritium decay constant} \]

\[\beta = \text{tritium fractional burnup in the plasma} \]

\[f_i = \text{tritium fractional leakage in compartment } i \]

\[I_0 = \text{constant flow rate of tritium recovered from waste, steam, and air processing units} \]
TRITIUM INVENTORY VARIATION WITH TIME
FOR THE BASE CASE PARAMETER VALUES
USING $\beta = 0.05$ and $t_d = 5$ YR

![Graph showing inventory variation with time for different units: Storage Unit, Plasma Recovery Unit, Blanket, Breeder Recovery Unit.](image-url)
Dependence of Required TBR on Plasma, Engineering Parameters

Reference Case (X_{ref})

- $\beta = 5\%$
- $T_1 = 10d$
- $t_r = 2d$
- $t_d = 5y$
- $T_6 = 1d$
- $\epsilon_6 = 0.1\%$
REQUIRED TBR IS FOUND TO BE
STRONGLY DEPENDENT ON SIX KEY PARAMETERS

\[\beta = \text{tritium fractional burnup in plasma} \]

\[t_d = \text{doubling time} \]

\[T_1 = \text{tritium mean residence time in blanket} \]

\[T_6 = \text{tritium mean residence time in plasma exhaust processing} \]

\[t_r = \text{number of days of tritium reserve} \]

\[\epsilon_6 = \text{tritium extraction inefficiency in plasma exhaust processing} \]
Log-Normal Probability Distributions Used as Weighting Functions, Superimposed on the Variation of the Breeding Ratio with Doubling Time.
REQUIRED BREEDING RATIO UNCERTAINTY
(95% CONFIDENCE LEVEL)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>x_g</th>
<th>σ_g</th>
<th>$\Lambda_{ex,i}$</th>
<th>$\Delta_{Gi} (%)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doubling time</td>
<td>5 yr</td>
<td>2</td>
<td>1.120</td>
<td>4</td>
</tr>
<tr>
<td>Burn fraction</td>
<td>.05</td>
<td>2.5</td>
<td>1.18</td>
<td>9.6</td>
</tr>
<tr>
<td>Days of T reserve</td>
<td>2 d</td>
<td>2</td>
<td>1.108</td>
<td>3</td>
</tr>
<tr>
<td>Plasma recovery loss fraction</td>
<td>0.001</td>
<td>5</td>
<td>1.153</td>
<td>7</td>
</tr>
<tr>
<td>Plasma recovery time</td>
<td>1 d</td>
<td>2</td>
<td>1.092</td>
<td>1.4</td>
</tr>
<tr>
<td>Blanket inventory</td>
<td>5 kg</td>
<td>3</td>
<td>1.097</td>
<td>2</td>
</tr>
</tbody>
</table>
ACHIEVABLE TBR

- Problem - We cannot predict precisely Λ_a because:
 - We do not know the exact specifications of what to build
 - For given reactor specifications, we cannot predict precisely the performance

- We can only calculate a TBR for a reference system with assumptions about its specifications

\[
\Lambda_a = \Lambda_c - \sqrt{\Delta_s^2 + \Delta_p^2}
\]
\(\Delta_C = \) TBR calculated (the best we know how today, 3D, etc.) for a specified blanket in a specified reactor

\(\Delta_S = \) Uncertainty associated with system definition [changes in calculated TBR resulting from changes in the reference reactor system (e.g., reference reactor system has limiter and reactor to be built could have a divertor)]

\(\Delta_p = \) Uncertainties in predicting TBR for a given system

\[
\Delta_p = \sqrt{\Delta_m^2 + \Delta_d^2 + \Delta_c^2}
\]

\(\Delta_m = \) Uncertainties associated with geometric modeling

\(\Delta_d = \) Uncertainties associated with nuclear data

\(\Delta_c = \) Uncertainties associated with calculational methods
TYPES OF UNCERTAINTIES IN PREDICTING ACHIEVABLE TBR

Uncertainties Associated with System Definition (Δ_s)

- First Wall/Blanket Definition
 - Configuration details, structure, coolant, manifolds, form and porosity of solid breeders, thermophysical property variations, etc.

- Reactor Definition
 - Technology choices (type of rf vs. neutral beams, limiter vs. divertor, etc.)
 - Requirements and specifications for specific technology choices (e.g., size and configuration of penetrations for limiter, material choices for limiter)
 - Presence of yet undefined components (e.g., penetrations for diagnostics and fueling, I&C)
 - Possible need for components to satisfy yet undefined requirements (e.g., passive copper coils in the blanket for plasma stabilization, sector to sector electrical joints, etc.)
\[\Delta_p = \text{UNCERTAINTIES ASSOCIATED WITH PREDICTING TBR FOR A GIVEN SYSTEM} \]

- Approximations in Geometrical Modeling (Δ_m)
 - Approximating engineering 3D surfaces and volumes by traditional mathematically convenient shapes (intersection of cones, cylinders, spheres, cubes, etc.)
 - Approximating discrete by continuous geometric zones
 - Approximating the details of heterogeneity

- Nuclear Data (Δ_d)
 - Uncertainties in basic nuclear data
 - Approximations in data processing
 - Approximations in final data libraries (number of energy groups, weighting functions, etc.)

- Calculational Methods (Δ_c)
 - Inherent in methods and codes
 - Introduced by analyst (e.g., order of S_n, P_n, etc.)
Vertical Cross Section of Reference Tokamak Reactor

- Shield
- Gap
- Blanket & Plenum
- First Wall
- Plasma Chamber
- Support
- Limiter module
- Rf Waveguide
UNCERTAINTIES IN ACHIEVABLE BREEDING RATIO DUE TO UNCERTAINTIES IN SYSTEM DEFINITION

<table>
<thead>
<tr>
<th>Type of Change</th>
<th>Change in TBR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No inboard blanket</td>
<td>14</td>
</tr>
<tr>
<td>Limiter:</td>
<td></td>
</tr>
<tr>
<td>Non-breeding limiter module</td>
<td>6</td>
</tr>
<tr>
<td>Doubling limiter duct width</td>
<td>2</td>
</tr>
<tr>
<td>Strong absorber coating</td>
<td>4</td>
</tr>
<tr>
<td>Divertor replaces limiter</td>
<td>7</td>
</tr>
<tr>
<td>Other penetrations:</td>
<td></td>
</tr>
<tr>
<td>Auxiliary heating</td>
<td>1</td>
</tr>
<tr>
<td>Fueling, diagnostics, etc.</td>
<td>1</td>
</tr>
<tr>
<td>Other materials in blanket (e.g., passive copper coils)</td>
<td>3</td>
</tr>
<tr>
<td>Blanket first wall specification details (configuration, structure, coolant, manifolds)</td>
<td>2</td>
</tr>
</tbody>
</table>
Δ_d, ESTIMATE OF UNCERTAINTY IN TBR DUE TO UNCERTAINTIES IN NUCLEAR DATA

<table>
<thead>
<tr>
<th>Blanket Concept</th>
<th>Δ_d (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li/Li/HT9</td>
<td>5.5</td>
</tr>
<tr>
<td>LiPb/LiPb/V</td>
<td>4.4</td>
</tr>
<tr>
<td>Li/Li/V</td>
<td>6</td>
</tr>
<tr>
<td>Li$_2$O/He/HT9</td>
<td>4.9</td>
</tr>
<tr>
<td>LiAlO$_2$/H$_2$O/HT9/Be</td>
<td>2.1</td>
</tr>
<tr>
<td>Concept</td>
<td>Achievable Λ_a</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Li$_2$O/He/HT9</td>
<td>1.11</td>
</tr>
<tr>
<td>LiA1O$_2$/He/HT9/Be</td>
<td>1.04</td>
</tr>
<tr>
<td>Li/He/HT9</td>
<td>1.16</td>
</tr>
<tr>
<td>LiA1O$_2$/H$_2$O/HT9/Be</td>
<td>1.16</td>
</tr>
<tr>
<td>LiA1O$_2$/DS/HT9/Be</td>
<td>1.24</td>
</tr>
<tr>
<td>LiPb/LiPb/V</td>
<td>1.30</td>
</tr>
<tr>
<td>Li/Li/V</td>
<td>1.28</td>
</tr>
</tbody>
</table>

Achievable and Required Tritium Breeding Ratios and Uncertainties for Leading Blankets in Tokamaks
Attaining DT Fuel Self Sufficiency
Requires Success in Both Physics and Engineering

\[I_B = \text{Blanket Tritium Inventory} \]
\[E = \text{Tritium Extraction Efficiency in Plasma Exhaust} \]
\[R = \text{No. of days of tritium reserve} \]

\[I_B = 20 \text{ kg} \]
\[E = 99.5\% \]
\[R = 4 \text{ d} \]

\[I_B = 5 \text{ kg} \]
\[E = 99.9\% \]
\[R = 2 \text{ d} \]

Required Tritium Breeding Ratio

Tritium Fractional Burnup in plasma, %

Self Sufficiency \rightarrow Lower Risk

More Successful

Engineering
PRESENT EFFORT ON TRITIUM BREEDING

- Efforts to Reduce Uncertainties in:

 Required TBR

 Achievable TBR

- Efforts to Improve Predictability of Uncertainties
REDUCING UNCERTAINTIES IN REQUIRED TBR

- Models to predict required TBR as a function of reactor plasma and engineering parameters

- Identifying allowable range of parameter space to guide R&D
 - Plasma, plasma support systems
 - Blanket
 - Tritium processing system
 - Other components
 - Early stage of fusion commercialization (short doubling time)
REDUCING UNCERTAINTIES IN ACHIEVABLE TBR

- Design Definition
 - Narrow materials and design concepts
 - Greater engineering detail

- Calculations
 - Modest improvement in methods
 - More detailed geometrical modeling

- Nuclear Data
 - Measurements
 - Evaluation
 - Data representation and processing
IMPROVING PREDICTABILITY OF UNCERTAINTY IN TBR

- Uncertainty in **Required** TBR
 - Probability distributions for reactor parameters
 - Methods to evaluate Δg

- Uncertainty in **Achievable** TBR
 - Integral experiments with point neutron source
 - Sensitivity analysis
 Improve methods
 Perform sensitivity studies
 - Benchmark calculations
 - Identifying requirements for integral experiments in fusion testing devices
• **LOTUS**: Switzerland
 - Led by IGA, EPFL, EIR in Switzerland
 - Cooperation with US, India
 - Emphasis on fissile material and tritium production in hybrid modules

• **LBM**: Supported by EPRI
 - PPPL, GA
 - Li$_2$O module for insertion in TFTR
 - Delays in using tritium in TFTR
 - Other uses being explored

• **Others**
 - OKTAVIAN: Osaka University
 Focus on clean, single material sphere
 - Special Experiments
 e.g., Pulsed Beryllium Sphere, LLNL