FUSION NUCLEAR TECHNOLOGY DEVELOPMENT
NEEDS AND STRATEGY

MOHAMED A. ABDOU, PROFESSOR
MECHANICAL, AEROSPACE AND NUCLEAR ENGINEERING DEPARTMENT
SCHOOL OF ENGINEERING & APPLIED SCIENCE
UNIVERSITY OF CALIFORNIA, LOS ANGELES

SEMINAR PRESENTED AT THE
UNIVERSITY OF TEXAS AT AUSTIN
JULY 24, 1984
OUTLINE

- Introduction
- FINESSE
- Issues and Testing Needs
 - Blanket/First Wall
 - Other Components
- Need for Neutrons
- Test Facilities
 - Non-Fusion Facilities
 - Test Stands, Point Sources, Fission Reactors
 - Fusion Facilities (Mirrors, Tokamaks)
- Quantifying Test Requirements for Fusion Facilities
 - Wall Load
 - Burn Cycle
 - Fluence
 - Surface Heat Load
 - Test Element Size
 - Test Element Area
- Scenarios for Fusion Development
 - Combined Physics and Technology Device
 - Parallel Physics and Technology Devices
 - Sequential Physics and Technology Devices
- Conclusions
FUSION: WHERE ARE WE IN 1984?

PLASMA

- Substantial Progress
- Uses most of world resources

ENGINEERING/TECHNOLOGY

- Plasma Heating
 - Substantial Progress

- Magnets
 - Significant Progress

- Nuclear Components
 - Least Progress
 - Many of fusion's unresolved critical issues
NUCLEAR COMPONENTS AND
COMPONENTS AFFECTED BY THE NUCLEAR ENVIRONMENT

- Blanket
- Shield
- Plasma Interactive and High Heat Flux Subsystems:
 - First Wall
 - Impurity Control
 - RF Antennas, Launchers and Waveguides
- Tritium and Vacuum Systems
- Instrumentation and Control
- Magnets
- Remote Maintenance
- Heat Transport and Power Conversion
THE WORLD FUSION COMMUNITY MUST ACT IMMEDIATELY TO DEVELOP A STRATEGY FOR SUCCESSFUL AND TIMELY RESOLUTION OF THE FUSION NUCLEAR ISSUES

- Many of fusion's unresolved issues are in nuclear technology. These issues relate to:
 - Feasibility (technology community acceptance)
 - Economics (utility acceptance)
 - Safety, Environment (public acceptance)

- Resolving these issues is challenging:
 - Costly (requires neutrons in test environment)
 - Requires long lead time
 - Test facilities requirements are complex
 - Non-fusion facilities are useful but not sufficient
 - Fusion test facilities necessary?
 - Combined with or separate from physics testing?
 - Cost?
 - Time schedule?
 - Risk?
FINESSE
FUSION NUCLEAR TECHNOLOGY DEVELOPMENT STUDY

- **Objective:**
 - Investigate the technical and programmatic issues in the development of fusion nuclear components

- **Two-year study (started in November, 1983)**

- **Major participation by key U.S. organizations:**
 - UCLA, ANL, EG&G, HEDL, MDAC, TRW
 - LLNL, PPPL
 - Coordination with other DOE and EPRI programs

- **Broad participation by fusion community:** advisory committee, workshops

- **Significant international participation**
 - Germany (KfK), Japan (JAERI, Universities), Canada
 - Importance:
 * All world programs face the same issues
 * International cooperation on NT: viable, economical
FINESSE PRINCIPAL TECHNICAL TASKS

I. Identification of Issues and Required Nuclear Tests

II. Quantifying Test Requirements
 A. Requirements on Test Conditions (e.g., wall load, fluence, size, burn cycle, field, etc.)
 B. Issues of Engineering Scaling
 C. Need for Neutrons and Integrated Testing
 D. Benefits Function of Test Facility Parameters

III. Evaluation of Experience from Other Technologies
 A. Fission
 B. Aerospace

IV. Survey, Evaluation of Neutron-Producing Test Facilities (Cost and Risk Function of Test Facility Parameters)
 A. Non-Fusion Devices
 B. Fusion Devices

V. Comparative Evaluation of Test Facilities, Scenarios

VI. Recommendations on Fusion Nuclear Technology Development Strategy
NUCLEAR TECHNOLOGY ISSUES

- Comprehensive characterization of fusion nuclear issues and testing needs is underway (FINESSE)

- Observations:
 - Issues are too many to list in a brief presentation
 - Testing requirements are complex

- The following are only examples
BLANKET/FIRST WALL

- Many design options proposed

- All options have potentially critical flaws

- Demonstrating the viability of a blanket:
 - Cannot be assured
 - Requires extensive testing:
 - Separate/multiple effects tests in non-fusion facilities
 - Interactive and integrated tests with neutrons in the test environment (fusion facilities appear to be necessary)
POLOIDAL BLANKET/MANIFOLD FLOW
TOROIDAL FIRST WALL FLOW

Key Problems

- Pressure Drop at Bends
- Flow Stagnation
- Flow Distribution
- Fabrication
CRITICAL FEASIBILITY ISSUES: LIQUID METAL BREEDING BLANKET

- Corrosion
 - Radioactive mass transfer/deposition
 - Temperature limit at liquid metal/structure interface

- MHD (circulating or during B-field transients)
 - High pressure/stress on structure
 - Large pumping/recirculating power

- Safety
 - Lithium: reactivity with air and water
 - Li-Pb: tritium permeation/containment
 - Require non-H₂O coolant for limiter/divertor/rf

- Hydraulics
 - With high heat flux: high T (interface)/T (mean)
 - Solution: flow mixing - increases MHD

- Tritium breeding
 - With lithium (impossible to eliminate inboard blanket)
 - (Li-Pb has the highest breeding potential)
Helium coolant flow path in the blanket.
CRITICAL FEASIBILITY ISSUES: SOLID BREEDER BLANKETS

- Tritium breeding
- Tritium inventory in solid breeder
- Design practicability
 - Low K, high power density, narrow ΔT
 - Thermal conductance at breeder/structure interface
 - Breeder physical integrity and containment
 - Ability to accommodate power variation
 - Lifetime limitations (high burnup, etc.)
- Tritium form (T₂, T₂O), permeation
- Issues related to specific solid breeders, e.g., Li₂O reactivity with H₂O to form LiOH, Li₂O swelling
- Issues related to specific coolant, e.g.:
 - H₂O: Tritium permeation/removal
 FAILURE RATE OF HIGH PRESSURE CONTAINMENT
 - He: Leakage of tritium contaminated He
 FIRST WALL COOLING
 HIGH OPERATING TEMPERATURE
- Issues related to structural materials:
 - Austenitic: High thermal stress, radiation damage, activation
 - Ferritic: Weld procedure, DBTT, ferromagnetic effects, activation
 - Vanadium: Sparse data, weld procedure, oxidation at high temperature, tritium permeation, not compatible with helium or water
TYPES OF TESTS IN TECHNOLOGY DEVELOPMENT

- **Basic tests (specimen)**
 - Basic data

- **Separate-effect tests (specimen, element)**
 - Simulation of one environment condition
 - Phenomenological, verify single-effect prediction capability

- **Multiple/interactive effects tests (element, submodule)**
 - Simulation of interaction among 1) two or more environmental conditions (e.g., B, T, \(\phi\)) and/or 2) two or more component elements (e.g., breeder/clad)
 - Verify prediction capability for specific interactions

- **Integrated tests (module, various scales)**
 - All environment elements and interactive effects
 - Discover "unknowns"
 - Failures, fixes
 - Data base and initial verification of a design concept

- **Component tests (full scale)**
 - Component tested in actual operation
 - Stages for design verification and reliability growth
 * Test/developmental reactors
 * Prototype
 * Near-commercial
Neutrons are necessary for meaningful interactive and integrated testing

- Neutrons represent the one ingredient in the fusion environment that:
 - is most harsh
 - produces largest single and interactive effects/changes
 - causes numerous critical feasibility issues
 - is least understood

- There are no substitutes for neutrons:
 - heating (correctness of simulation, economics)
 - radiation effects (MUST)
 - specific reactions (MUST)
IMPORTANCE OF NEUTRONS
FOR BLANKET/FIRST WALL TESTS

Heating

- Temperature distribution in breeder, multiplier, structure and interfaces
 - Thermal stresses
 - Thermally activated restructuring
 - Tritium recovery
 - Others
 - "Unknowns"

- Examples of unexpected effects:
 - Heat transfer coefficient in liquid metals depends on bulk heating

Specific Reactions

- Tritium
- Helium
- Atomic displacements
- Transmutations

- Tritium recovery in the presence of other neutron effects
- Tritium permeation and containment
- Helium bubble formation rate, effects in liquid metals
- Activation and corrosion products transport
- Tritium and helium holdup and effects in all elements
- LiOT transport (in Li2O)
IMPORTANCE OF NEUTRONS
FOR BLANKET/FIRST WALL TESTS
(CONTINUED)

MATERIALS DAMAGE

- Radiation-induced changes in basic properties (e.g., thermophysical) in solid breeders, multipliers and structure
- Radiation-induced dimensional changes in solid breeders, multipliers and structure (swelling, creep, etc.)
- Radiation-induced embrittlement in structure
- Numerous radiation effects in solid breeders critical to tritium release/retention
- Radiation effects in structure influencing tritium permeation/inventory
- Radiation-induced sensitivity of stress-corrosion
- Radiation effects in welds, joints
- Radiation damage to instrumentation
- Many other known effects
- Unknowns
IMPORTANCE OF NEUTRONS FOR OTHER (NON-BLANKET) COMPONENTS TESTS

Shielding
- Mandatory for radiation transport/streaming tests

Impurity Control and Exhaust
- Neutron environment at plates as harsh as the first wall
- Radioactive erosion products transport
- Radiation effects in cryopumps

Auxiliary Heating
- Antenna, waveguides, etc.: Many radiation effects as the first wall
- Additional effects in supplementary subsystems, e.g., cryopanels, coaxial cables

Superconducting Magnets
- Degradation of mechanical and dielectric properties of insulators
- Increase in electrical resistivity of stabilizer
- Reduction in critical current density of superconductor

Instrumentation and Control
- Radiation effects, heating impeding proper functioning
NEUTRON-PRODUCING FACILITIES

- Accelerator-Based "Point" Sources
- Fission Reactors
- Fusion Reactors

POINT NEUTRON SOURCES

- Necessary/useful for specific purposes
 - Radiation effects in capsules (fluence)
 - Neutronics (tritium breeding, shielding)
- Not suitable for multiple-effect/integrated tests

FISSION REACTORS

- Larger (but limited) volume than point sources
- Suitable for capsule and some subelement tests
- Are being used and we need to continue to use them
- But, they CANNOT substitute for fusion testing
 - Limitations on volume
 - Limitations on simulating environment elements (e.g., electromagnetic)
 - Limitations on simulating environmental parameters (e.g., power density, spatial/time dependence, etc.)
 - Spectral differences from fusion neutrons
TYPICAL NEUTRON FLUX AT FIRST WALL
(Li$_2$O/HT-9/He, TokamakA)

<table>
<thead>
<tr>
<th>Energy Range (MeV)</th>
<th>FluxB (cm$^{-2}$.s$^{-1}$)</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.5-14.9</td>
<td>8.472 x 1013</td>
<td>0.215</td>
</tr>
<tr>
<td>10.0-14.9</td>
<td>9.489 x 1013</td>
<td>0.240</td>
</tr>
<tr>
<td>4.5-14.9</td>
<td>1.154 x 1014</td>
<td>0.292</td>
</tr>
<tr>
<td>1.35-14.9</td>
<td>1.570 x 1014</td>
<td>0.398</td>
</tr>
<tr>
<td>0.166-14.9</td>
<td>2.588 x 1014</td>
<td>0.655</td>
</tr>
<tr>
<td>Total</td>
<td>3.948 x 1014</td>
<td>1.0</td>
</tr>
</tbody>
</table>

APlasma radius = 253 cm
Vacuum gap = 20 cm
First wall radius = 275 cm

BNormalized to 1 MW/m2 wall loading
(neutron current = 4.426 x 1013 W/sec·cm2)

CGamma ray total flux = 1.777 x 1014 (γ/sec·cm2)
Fusion and Fission Neutron Spectrum

<table>
<thead>
<tr>
<th>Energy (MeV)</th>
<th>Fraction of Flux</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fusion</td>
<td>Fission</td>
</tr>
<tr>
<td>> 10</td>
<td>0.24</td>
<td>~ 0</td>
</tr>
<tr>
<td>> 4.5</td>
<td>0.29</td>
<td>0.013</td>
</tr>
<tr>
<td>> 1.35</td>
<td>0.40</td>
<td>0.16</td>
</tr>
<tr>
<td>> 0.166</td>
<td>0.65</td>
<td>0.48</td>
</tr>
<tr>
<td>> 0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

First Wall Damage Indicator at 1 MW·y/m² Exposure

<table>
<thead>
<tr>
<th></th>
<th>First Wall Flux (cm⁻²·s⁻¹)</th>
<th>Required Flux (cm⁻²·s⁻¹) in Fission Reactor</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPA</td>
<td>11</td>
<td>4 x 10¹⁴</td>
</tr>
<tr>
<td>He</td>
<td>203</td>
<td>4 x 10¹⁴</td>
</tr>
</tbody>
</table>
In-Core Test Locations in Existing Fission Reactors

<table>
<thead>
<tr>
<th>Maximum Flux (\text{n}\cdot\text{cm}^{-2}\cdot\text{s}^{-1})</th>
<th>5 cm</th>
<th>7.5 cm</th>
<th>10 cm</th>
<th>12.5 cm</th>
<th>15 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5 \times 10^{12} - 5 \times 10^{13})</td>
<td>13 (23)</td>
<td>13 (23)</td>
<td>3 (13)</td>
<td>1 (1)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>(5 \times 10^{13} - 5 \times 10^{14})</td>
<td>118 (223)</td>
<td>93 (115)</td>
<td>17 (36)</td>
<td>5 (17)</td>
<td>1 (10)</td>
</tr>
<tr>
<td>(5 \times 10^{14} - 5 \times 10^{15})</td>
<td>9 (29)</td>
<td>9 (26)</td>
<td>9 (26)</td>
<td>9 (26)</td>
<td>0 (16)</td>
</tr>
<tr>
<td>(7.5 \times 10^{15})</td>
<td>40 (40)</td>
<td>4 (4)</td>
<td>4 (4)</td>
<td>1 (1)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

Slab-Type Test Locations in Existing Fission Reactors

<table>
<thead>
<tr>
<th>Maximum Flux (\text{n}\cdot\text{cm}^{-2}\cdot\text{s}^{-1})</th>
<th>25 cm</th>
<th>50 cm</th>
<th>75 cm</th>
<th>100 cm</th>
<th>150 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5 \times 10^{13} - 5 \times 10^{14})</td>
<td>7 (11)</td>
<td>1 (4)</td>
<td>0 (2)</td>
<td>0 (1)</td>
<td>0 (1)</td>
</tr>
</tbody>
</table>

Notes:
- Numbers in tables refer to number of available test locations in U.S. reactors. The numbers in parentheses refer to the number of test locations in U.S. and foreign reactors.
- Neutron flux at the first wall of a fusion reactor is \(\sim 4 \times 10^{14} \text{ n} \cdot \text{cm}^{-2} \cdot \text{s}^{-1} \) for 1 MW/m². The fission reactor flux contains a large thermal neutron component.
FISSION REACTORS

FLUX DEPRESSION vs. CORE THICKNESS

FLUX DEPRESSION = 1 - \(\frac{(\phi_p/\phi_e) \text{ UNPERTURBED}}{(\phi_p/\phi_e) \text{ PERTURBED}} \)

THERMAL (E < 0.4 eV)
- \(\text{Li}_2\text{O}/\text{He}/\text{HT-9} + 0.15 \text{ Cd} \)
- \(\text{LiAlO}_2/\text{Be}/\text{H}_2\text{O}/\text{HT-9} + 0.15 \text{ Cd} \)
- \(\text{Li}/\text{Li}/\text{V} \)
- \(\text{LiAlO}_2/\text{Be}/\text{H}_2\text{O}/\text{HT-9} \)
- \(\text{Li}_2\text{O}/\text{He}/\text{HT-9} + 0.04 \text{ Cd} \)
- \(\text{Li}_2\text{O}/\text{He}/\text{HT-9} \)

FAST (E > 900 KeV)
- \(\text{LiAlO}_2/\text{Be}/\text{H}_2\text{O}/\text{HT-9} + 1.5 \text{ Cd} \)
- \(\text{Li}_2\text{O}/\text{He}/\text{HT-9} + 0.04 \text{ Cd} \)
- \(\text{Li}/\text{Li}/\text{V} \)
- \(\text{LiAlO}_2/\text{Be}/\text{H}_2\text{O}/\text{HT-9} \)
- \(\text{Li}_2\text{O}/\text{He}/\text{HT-9} \)
FISSION REACTORS

IMPACT OF SLAB TEST MODULE PLACED AT THE SIDE OF FISSION REACTOR ON CORE CRITICALLY

![Graph showing the impact of different materials on the negative reactivity worth and core thickness.]

- LiO₂/He/HT-9
- LiO₂/He/HT-9 + 0.15 Cd
- LiAlO₂/Be/H₂O/HT-9 + 0.15 Cd
- Li/Li/VCrTi
- Li₂O/He/HT-9 + 0.04 Cd

TEST MODULE NEGATIVE REACTIVITY WORTH ($)

AVERAGE CONTROL/SAFETY ROD WORTH (+ $2.5)

CORE THICKNESS (m)
FISSION REACTORS:
POWER DENSITY AND TRITIUM PRODUCTION PROFILES

- SIGNIFICANT SELF-SHIELDING EFFECTS IN FIRST SEVERAL CENTIMETERS, NOT GREATLY IMPROVED BY ADDITION OF Cd FILTER
- POWER DENSITY AND TRITIUM PRODUCTION RATES ARE LIMITED TO THAT EQUIVALENT TO \(\sim 1 \, \text{MW/m}^2 \)
FUSION FACILITIES FOR
TESTING NUCLEAR COMPONENTS

Are They Needed?

We have not yet found an alternative to satisfying the identified critical testing needs.

Why?

- Volume/surface area of test element/module
 Some tests require: \(\sim 1 \, \text{m} \times 1 \, \text{m} \times 0.5 \, \text{m} \)
 Obtainable only in fusion test device

- Total volume/surface area of test matrix
 Need: uniform steady neutron source with \(2 \times 10^{18} - 10^{19} \, \text{n/s} \)
 Obtainable only in fusion reactor

- Simulation of all environment conditions
 - Neutrons
 - Electromagnetics
 - Plasma particles
 - Tritium
 - Vacuum

- Neutron spectrum
 - 14 MeV source neutrons
 - Complex "slowing down/backscattering" spectrum
LIMITATIONS/PROBLEMS OF FUSION DEVICES AS TEST FACILITIES

Cost
- Relatively high on a single capital investment basis
- Not expensive on a per neutron basis as compared to other non-fusion neutron sources

Risk in device performance/operation
- Plasma performance: data base for some type of "neutron-producing plasma?"
- Engineering components:
 * Reliability/availability?
 * Developmental needs are in the mainstream of overall fusion engineering development requirements? Serve a focusing/forcing function?

Potentially serious limitations on simulating environmental parameters
- Cost forces scaled-down conditions
- "Look-alike" test modules are useless
- "Act-alike" test modules are being examined
- Many difficulties are encountered; complex issues with engineering scaling are being addressed
FUSION NUCLEAR ENGINEERING TEST DEVICE
KEY TESTING/COST PARAMETERS

Major Parameters That Are:

• Critical to Successful Testing
• Drivers on Testing Device Cost

1. Neutron wall load (power density)
2. Surface heat load
3. Fluence (fluence ~ wall load x lifetime x availability)
4. Minimum continuous (100% availability) operating period
5. Plasma burn cycle (burn/dwell time)
6. Magnetic field strength
7. Surface area for testing:
 - Surface area for testing element
 - Test matrix
8. Volume for testing:
 - Depth of test element
 - Test matrix
ACT-ALIKE TEST MODULES ARE NECESSARY
 BUT:
 • THEY INVOLVE COMPLEX ENGINEERING ISSUES
 • THEY ARE NEVER PERFECT

Simple Examples

• At lower q_s, P_{NW}: increase structure thickness to increase (preserve) thermal stresses

 - Hoop stress: lower at larger thickness can preserve total stress?

 - Temperature gradient: cannot be preserved important?

• At lower q_s, P_{NW}: increase solid breeder plate thickness, preserve temperature window for tritium recovery

 - Tritium production rate: lower important for T recovery? effect on TBR

• Limited size for liquid metal blanket test: shorten blanket test module; but, temperatures and fluid flow are not always fully developed in fusion liquid metal blankets; many important parameters (e.g., heat transfer coefficient, MHD pressure drop, etc.) sensitive to geometry (also to B field, nuclear heating)

• Cycling, burn and dwell times substantially alter many effects: time to reach equilibrium, values at quasi-equilibrium, failure modes, etc.
LOOK-ALIKE TEST MODULES
DO NOT PROVIDE MEANINGFUL INFORMATION
UNDER SCALED-DOWN CONDITIONS

Examples

- Thermal stresses are not maintained at lower values of surface heat flux \(q_s\) and/or neutron wall load \(P_{NW}\)

- Tritium transport, inventory altered because of different \(q_s\), \(P_{NW}\), temperature profiles

- Cycling, burn and dwell times affect time to reach quasi-equilibrium, temperatures, stresses, tritium recovery, etc.

- Corrosion rates and fluid flow characteristics cannot be maintained at lower \(q_s\), \(P_{NW}\), temperature

- Total and relative contributions to MHD pressure drop are sensitive to magnetic field and velocity and temperature profiles (depend on \(q_s\) and \(P_{NW}\))
\[t_c = \text{CHARACTERISTIC TIME} \]

\[\text{MCOT} = \text{MINIMUM CONTINUOUS TIME} \]

\[\Delta \theta_{\text{max}} \]

\[\Delta \theta_{\text{min}} \]

\[\theta = T_B - T_{\text{in}} \]

\[\theta_{\text{qe}} = \theta_{ss} \frac{1 - e^{-t_B/t_c}}{1 - e^{-(t_B + t_d)/t_c}} \]

\[\Delta \theta = \theta_{qe} (1 - e^{-t_d/t_c}) \]

\[t_c = \frac{\rho_b C_p b \delta_b}{h} \left(\frac{2 k_b}{3} + \frac{2 k_b}{h \delta_b} \right) \]
Model predictions for tritium inventory as a function of the minimum blanket temperature for the BCSS (LOBE-2B) LiAlO$_2$/H$_2$O/Be/HT-9 blanket. A maximum temperature of 950°C and a tritium generation rate of 866 g/day are assumed.
PULSING IMPACTS TESTING THE DEPENDENCE OF TRITIUM RECOVERY ON TEMPERATURE

\(t_b = 100 \text{ s}, \ t_d = 10 \text{ s} \)

Graph:
- \(T_{\text{min}} < T < T_{\text{max}} \)
- \(T_{\text{min}} - 50 < T < T_{\text{min}} \)
- \(T < T_{\text{min}} - 50 \)

Axes:
- **Y-Axis:** BREEDER VOLUME FRACTION, %
- **X-Axis:** TIME, s
TIME TO EQUILIBRIUM IN
LiAlO$_2$/Be/H$_2$O/HT-9 BLANKET

T$_{\text{min}}$ = 400°C
$\text{t}_{0.99} = 42$ d

T$_{\text{min}}$ = 360°C
$\text{t}_{0.99} = 0.6$ yr

Tritium Release Rate Fraction

Time (s)
Li$_2$O/He/HT-9 FIRST WALL SCALING

Graph 1: Test Module Half-Width vs. Test Device Surface Heat Load (MW/m2)
- $\Delta T_{nw}/\Delta T_{fw} < 1$
- $q_{nw} = 1$ MW/m2
- $S > 5$
- $t/R < 0.1$
- $c_{tritium} (M = 3)$

Graph 2: Test Device Burn Time vs. Test Device Surface Heat Load (MW/m2)
- $\tau_{erosion}$ (2 mm)
- $\tau_{tritium}$ (67%)
- $\tau_{thermal}$ (67%)

EINESSE
Consider laminar channel flow with heat generation and surface heat flux:

Velocity profile

$$U = \frac{2n + 1}{2n} [1 - (y/\delta)^{2n}] \quad U_b = f(y/\delta) \quad U_b$$

The Nusselt numbers are calculated as:

$$\frac{1}{\text{Nu}^{\pm}} = \frac{1}{4} - I_1/8 - (I_1/16)(q^{+}/q^{\pm} - 1) + (I_2/4)(\dot{\alpha}_V \delta/q^{\pm})$$

where

$$I_1 = \int_{-1}^{1} d\eta \ f(\eta) \int_{-1}^{\eta} d\eta \int_{-1}^{\eta} d\eta \ f(\eta)$$

$$I_2 = \frac{1}{2} \int_{-1}^{1} d\eta \ f(\eta) \int_{-1}^{\eta} d\eta \int_{-1}^{\eta} d\eta \ [f(\eta) - 1]$$
WALL TEMPERATURE AS A FUNCTION OF VOLUMETRIC HEATING IN TEST MODULE WITH TOTAL ENERGY INPUT PRESERVED

\[q_T^+ = q_s + (1 - \eta) \dot{Q}_V \delta + \dot{Q}_V \delta_1 \]

\[q_T^- = (1 - \eta) \dot{Q}_V \delta + \dot{Q}_V \delta_2 \]

\(\dot{Q}_V = 25 \text{ MW/m}^3 \)

\(q_s = 0.5 \text{ MW/m}^2 \)

\(\delta_1 = 7.5 \text{ mm} \)

\(\delta_2 = 7.5 \text{ mm} \)

\(2\delta = 45 \text{ mm} \)

\[\eta = \dot{Q}_{V,T}/\dot{Q}_V \]

\[T_{w^+} - T_b \]

\[T_{w^-} - T_b \]
TEMPERATURE PROFILE DEPENDS ON VOLUMETRIC HEATING

\[T - T_b \ [^\circ C] \]

\[\frac{Y}{\delta} \]

NUCLEAR HEATING PRESENT

NUCLEAR HEATING REPLACED BY SURFACE HEATING

40
EFFECT OF BULK HEATING ON TEMPERATURE PROFILES

\[\frac{U}{U_b} = \frac{n+1}{n} \left[1 - \left(\frac{y}{\delta} \right)^n \right] \]

n→∞

SLUG FLOW

n = 6

n = 2

BULK-TO-SURFACE HEATING RATIO, \(\dot{Q}_\delta/q'' \)
LIQUID METAL HEAT TRANSFER COEFFICIENT FOR NON-FULLY DEVELOPED FLOW DEPENDS ON TEST MODULE GEOMETRY AND FLOW CHARACTERISTICS

\[Nu = \frac{2hd}{k} \]
\[Fo = \frac{\alpha L}{\nu d^2} \]
\[\alpha = \frac{k}{\rho C_p} \]

BCSS TOROIDAL CHANNEL EXIT
CORROSION RATE DEPENDENCE ON MAGNETIC FIELD STRENGTH

STOKES-EINSTEIN

OLANDER

CR(H)/CR(∞)

HARTMANN NUMBER
Composite Wall Stresses

BCSS THERMAL STRESSES

Composite Wall Stresses

TEST MODULE THERMAL STRESSES
BLANKET TEST MODULE TRITIUM PRODUCTION

\[L = \frac{2 \pi R \cdot 2 \theta}{360} \]

FIRST WALL ZONE: PCA, 6.6% DENSE, BALANCE HELIUM

BREEDING ZONE: 6% PCA, 85% Li2O (DENSITY FACTOR 0.8) BALANCE HELIUM

PLENUM ZONE: PCA, 10% DENSE, BALANCE HELIUM

SHIELD ZONE: 100% STAINLESS STEEL

\[R_p = 253 \text{ cm} \]
\[R_f = 273 \text{ cm} \]
\[W_1 = 6 \text{ cm} \]
\[W_2 = 42 \text{ cm} \]
\[W_3 = 22 \text{ cm} \]
\[W_4 = 30 \text{ cm} \]
\[W = 100 \text{ cm} \]
LIMITING BLANKET TEST MODULE SIZE SUBSTANTIALLY CHANGES TRITIUM PRODUCTION PROFILES

\[\begin{align*}
\text{TOTAL} & \quad \bullet \ 2\theta = 12^\circ, \ L = 0.57 \text{ m} \\
7_{\text{Li}} & \quad \circ \ 2\theta = 24^\circ, \ L = 1.14 \text{ m} \\
6_{\text{Li}} & \\
\end{align*} \]

RATIO OF VOLUMETRIC T-PRODUCTION RATE IN TEST MODULE TO FULL COVERAGE

POLOIDAL ANGLE, \(^\circ \)
Mockup of Module Test Device

Two Dimensional Calculation Model
EXAMPLES OF IRRADIATION EFFECTS AS A FUNCTION OF EXPOSURE

<table>
<thead>
<tr>
<th>Exposure (MW-yr/m²)</th>
<th>Phenomena/Effects</th>
</tr>
</thead>
</table>
| 0-0.2 | Thermophysical Property Changes
| | **Solid Breeder Cracking**
| | **Liquid Metal Embrittlement of Structure**
| | **Li₂O Swelling**
| | **Multiplier Swelling**
| | **First Wall Erosion**
| | **Weld/Joint Integrity**
| | **Initial Operational Stress Effects**
| | **Surface Damage Effects on Tritium Desorption**
| | **Purge Gas Composition Effects on Tritium Recovery**
| | **Tritium Permeation through First Wall and Clad** |
| 0.2-1 | Thermophysical Property Changes
| | **Li₂O Swelling Dominates Breeder/Clad Mechanical Interaction**
| | **Cladding Creep Ductility Drops Sharply (HT-9, 316)**
| | **Fatigue and Creep/Fatigue Initiated Irradiation Effects on Welds/Joints**
| | **First Wall Erosion + Surface Cracking**
| | **Relaxation of Thermal Stresses**
| | **Radiation-Induced Trapping** |
| 1-3 | **Breeder/Clad Permeation-Barrier Breakdown**
| | **Cladding Creep Embrittlement Saturates (HT-9, 316)**
| | **Fracture Toughness Reduction Initiated (Structure)**
| | **Stress Relaxation Complete**
| | **Porosity in Breeder May Close Off**
| | **Radiation-Induced Sintering Grain Growth**
| | **Burnup Effects on Chemistry**
| | **Hot Transport**
| | **Breeder/Clad Corrosion** |
Examples of Irradiation Effects as a Function of Exposure (continued)

<table>
<thead>
<tr>
<th>Exposure (MW-yr/m²)</th>
<th>Phenomena/Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-5</td>
<td>Irradiation Hardening (<450°C)/Softening (>450°C) Saturates Fracture Toughness, aDBTT Saturates Fatigue Crack Propagation Irradiation Creep/Swellng of Austenitic Alloy Onset Clad, Swelling (316) Dominates Breeder/Swellng Interaction</td>
</tr>
<tr>
<td>5-10</td>
<td>Irradiation Creep/Swellng of HT-9 Onset Cladding Swelling (HT-9) Creep Dominates Breeder/Cladding Interaction Fatigue Failure</td>
</tr>
</tbody>
</table>
| 10-20 | End-of-Life Phenomena
 - Operational Stress Effects
 - Reduced Toughness
 - First Wall Thinning - Unstable Deformation
 - Fatigue, Creep Fatigue - Unstable Cracking |
CLAD/BREEDER MECHANICAL INTRACTION
(ESTIMATES FOR Li₂O/HT-9/He)

% STRAIN

BREEDER SWELLING

CLAD EMBRITTLEMENT

CLAD SWELLING

EXPOSURE, MW · y/m²
POSSIBLE TOKAMAK DEVELOPMENT SCENARIOS

TFTR → ETR → DEMO

TFTR → TFCX → ETR → DEMO

TFTR → TFCX → TFCX-U → ETR/DEMO

TFTR → TFCX/TFCX-U → ETR/DEMO
 NTF (MIRROR)

TFTR → TFCX → DEMO
 NTF (TOKAMAK)
<table>
<thead>
<tr>
<th>MISSION</th>
<th>IGNITION/BURN PHYSICS</th>
<th>NUCLEAR TEST FACILITY (NTF)</th>
<th>ENGINEERING TEST REACTOR (ETR)</th>
<th>ENGINEERING DEMONSTRATION REACTOR (DEMO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIGURATION RELEVANT TO RESOLVE LONG PULSE PLASMA PHYSICS ISSUES</td>
<td>CONFIGURATION RELEVANT TO NUCLEAR COMPONENT TESTING. CAPABILITY FOR SEVERAL TEST ARTICLES</td>
<td>FULLY INTEGRATED ENVIRONMENT SUITABLE FOR TESTING MAJORITY OF INTERACTIVE EFFECTS.</td>
<td>NEARLY ALL SYSTEMS PROTOTYPICAL, BUT SMALLER THAN FULL SCALE COMMERCIAL.</td>
<td></td>
</tr>
<tr>
<td>MINIMUM FLUENCE GOAL</td>
<td>NEGLIGIBLE</td>
<td>> 1 MW·yr/m²</td>
<td>> 3 MW-yr/m²</td>
<td>> 5-6 MW-yr/m²</td>
</tr>
<tr>
<td>AVAILABILITY GOAL</td>
<td>LOW</td>
<td>TENS OF RUNS PER YEAR, DAYS EACH RUN</td>
<td>ULTIMATELY ~30%</td>
<td>ULTIMATELY ~ 50%</td>
</tr>
<tr>
<td>RISK/SCHEDULE</td>
<td>RISK CAN BE HIGH. SHOULD BE FIRST FACILITY IN PATH</td>
<td>RISK AS A NEUTRON PROVIDER SHOULD BE LOW. TEST ARTICLE RISK CAN BE HIGHER</td>
<td>ONLY TEST ARTICLES CAN BE HIGH RISK.</td>
<td>ONLY HIGH FLUENCE TESTS (>5-6 MW-yr/m²) CAN BE RISKY</td>
</tr>
<tr>
<td>FACILITY EXAMPLES</td>
<td>TF CX, LITE, MFTF-α</td>
<td>MFTF-α + T, TDF, FED-R, NTF</td>
<td>INTOR, FPD, NET, FER</td>
<td>STARFIRE DEMO</td>
</tr>
</tbody>
</table>
BLANKET TESTING AND DEVELOPMENT ISSUES
MUST BE A MAJOR CONSIDERATION IN:

- **Selecting overall fusion development scenario, e.g.:**
 - **Combined:** Physics and technology testing in a single device (INTOR-type)
 - **Parallel:** Physics and nuclear technology facilities
 - **Sequential:** Physics device followed by technology facility

- **Selecting the type and characteristics of a dedicated fusion nuclear technology facility (NTF).**
COMBINING PHYSICS AND NUCLEAR TESTING
IN A TOKAMAK MANDATES A
TRITIUM-PRODUCING BLANKET IN THE TEST DEVICE

Neutron/Tritium Requirements

A. **Physics Only (Tokamak)**
 - \(\sim 380 \text{ m}^2, 1.3 \text{ MW/m}^2 \)
 - DT burn: \(2 \times 10^5 \text{ s} \)
 - Number of neutrons = \(4.4 \times 10^{25} \)
 - Tritium consumption = \(0.22 \text{ kg} \)

B. **Nuclear Testing Only** (assume a device not physics limited)
 - \(\sim 10 \text{ m}^2, 1.3 \text{ MW/m}^2 \)
 - DT burn: 5 continuous years
 - Number of neutrons = \(9 \times 10^{26} \)
 - Tritium consumption = \(4.5 \text{ kg} \)

C. **Combined Physics and Nuclear Testing in Single Tokamak**
 - \(\sim 380 \text{ m}^2, 1.3 \text{ MW/m}^2 \)
 - DT burn: 5 continuous years
 - Number of neutrons: \(3.4 \times 10^{28} \)
 - Tritium consumption: \(171 \text{ kg} \)
THE NEED FOR A TRITIUM-PRODUCING BLANKET IN A FUSION TEST REACTOR STRONGLY DEPENDS ON FUSION POWER AND FLUENCE GOALS

Required Breeding Ratio

Year

MWTH

500

300

200

150

100

H₂ ▲ ▲ DT

2.4 Kg/yr

DEVICE AVAILABILITY

TRITIUM SUPPLY
• Conventional (ignited) tokamak used for nuclear testing requires large amount of tritium. Options:
 - Buy tritium
 * Not available
 * Cost unacceptably high (~ $2 B)
 - Produce own tritium (blanket in test device)
 * There is no low technology option
 * Breeding blanket will be built without prior fusion testing

• Breeding blanket without prior fusion testing will increase cost and risk
 - Unnecessary cost (comes only from combining physics and technology)
 - High risk
 * Initial availability per module low
 * Many modules + overall blanket availability low
 * Failure in blanket module generally requires device shutdown + overall device availability low
 * Risk in accomplishing device mission
MAJOR DIFFERENCES BETWEEN:
A) BLANKET PRODUCTION MODULES
B) BLANKET TEST MODULES

NUMBER OF MODULES

Production Modules: LARGE (>60)
Test Modules: SEVERAL PLUS TEST ELEMENTS

CONTAINMENT

Production Modules: INSIDE VACUUM BOUNDARY
Test Modules: MOSTLY OUTSIDE VACUUM BOUNDARY

FAILURES LEADING TO UNSCHEDULED DEVICE SHUTDOWN

Production Modules: MOST LIKELY (INSIDE VACUUM BOUNDARY, NEED CONTINUED OPERATION FOR TRITIUM)
Test Modules: NOT NECESSARY

IMPACT ON DEVICE AVAILABILITY

Production Modules: SEVERE (PROBABLY UNACCEPTABLE)
Test Modules: SIGNIFICANT, ACCEPTABLE

BENEFITS/COST OF LEARNING

Production Modules: LOW
Test Modules: HIGH

CORRECTING FOR FATAL FLAWS IN DESIGN/OPERATION OR INCORPORATING IMPROVEMENTS BASED ON TEST RESULTS ARE VERY COSTLY AND TIME CONSUMING FOR THE LARGE NUMBER OF PRODUCTION MODULES.
As a Result, The NTF Could Lead to a Higher Initial Availability in the Subsequent Facility
SUMMARY AND RECOMMENDATIONS

- Clearly defined **intermediate** and **ultimate goals** for fusion are fundamental to program direction and **development strategy**
 - There is no single unique best strategy
 - Best strategy is the one that achieves the goals with minimum time, cost

- Goals:
 - **Ultimate**
 - Commercial power reactors
 - **Intermediate** (~ Year 2000)
 - Develop sufficiently **credible data base** to permit the nation to quantitatively judge the **potential of fusion**
SUMMARY AND RECOMMENDATIONS
(continued)

• JUDGING THE POTENTIAL

A. WHAT TO BE JUDGED

CONCEPTUAL DEFINITION OF END PRODUCT

PLUS

DATA BASE

B. JUDGEMENT CRITERIA

1. FEASIBILITY

- HARD AND CONVINCING DATA FROM REALISTIC TESTING

- EXPERIENCE TO SHOW THAT MAJOR FEASIBILITY ISSUES ARE RESOLVED

2. POTENTIAL ATTRACTIVENESS OF END PRODUCT

- CREDIBLY EXTRAPOLATED DATA BASE

- ECONOMICS

- SAFETY AND ENVIRONMENT
SUMMARY AND RECOMMENDATIONS (CONTINUED)

• KEY REQUIREMENTS IN THE R&D STRATEGY

I. FOCUS ON:

A. MAJOR FEASIBILITY ISSUES IN PHYSICS AND ENGINEERING

- REALISTIC TESTS
 - SINGLE/MULTIPLE EFFECT TESTS
 - INTEGRATED TESTS

- ANALYTICAL/COMPUTATIONAL MODELING

B. ATTRACTIVENESS ISSUES

- LEARN PHYSICS AND ENGINEERING LIMITS FROM REALISTIC TESTS

- ENCOURAGE INNOVATIVE IDEAS

- FOCUS STUDIES AND R&D ON ISSUES RELATED TO:
 - COST OF ENERGY
 - SMALLER SIZE UNITS/LOWER CAPITAL COST
 - IMPROVED SAFETY (BUT CREDIBLE AND ECONOMICAL)

II. STRIVE TO MAINTAIN BALANCE IN R&D AMONG MAJOR FEASIBILITY ISSUES IN PHYSICS AND ENGINEERING
SUMMARY AND RECOMMENDATIONS
(CONTINUED)

- DEVELOPING DATA BASE IN PHYSICS AND ENGINEERING

I. PLASMA

A. PHYSICS: SMALL DEVICES PLUS A MAJOR DEVICE (TFCX)

B. PLASMA-INTERACTIVE COMPONENTS: PARTIALLY IN PHYSICS DEVICES

II. ENGINEERING

A. SUPERCONDUCTING MAGNETS: EITHER IN MAJOR PHYSICS DEVICE OR MAJOR ENGINEERING TEST DEVICE

B. AUXILIARY HEATING: IN BOTH PHYSICS AND ENGINEERING DEVICES

C. NUCLEAR COMPONENTS/ENVIRONMENT:

- SEPARATE AND MULTIPLE-EFFECT TESTS (MOST CRITICAL TIME FRAME: 1985-1995)
 - SOME ARE IN PROGRESS
 - NEED ADDITIONAL IMPORTANT SMALL SCALE FACILITIES AND TESTS IN NEUTRON-PRODUCING NON-FUSION FACILITIES

- INTEGRATED TESTS
 - SIGNIFICANT TESTS TO START BY THE MID 1990'S
 - DEDICATED FUSION NUCLEAR TESTING FACILITY?
SUMMARY AND RECOMMENDATIONS (continued)

FUSION NUCLEAR TECHNOLOGY DEVELOPMENT

- INvolves many fusion unresolved Issues in:
 - FEasibility (technology community acceptance)
 - economies (industry, utility acceptance)
 - safety, environment (public acceptance)

Therefore, a strong program on fusion nuclear technology is a NECESSARY element of the national/international fusion program

- characteristics of nuclear development
 - requires long lead time
 - start NOW
 - realism in time schedule
 - relatively expensive
 - careful planning
 - international options
 - complex
 - understand issues and testing needs
 - quantify test requirements
 - investigate, develop engineering scaling relationships
CONCLUSIONS

• Many of fusion's remaining key unresolved issues are in nuclear technology.

• We must seek successful and timely resolution of the nuclear issues.

• Resolving these issues will be relatively costly and requires long lead time.

• Non-fusion facilities (test stands, point neutron sources, fission reactors) are very useful, and we must effectively use them.

• However, non-fusion facilities are not adequate for critical interactive and integrated tests. Serious limitations relate to size and multiple environmental conditions.

• Substantial testing of key nuclear components in fusion test facilities is required prior to incorporation as operating components in an integrated system.

• The design and operation of a fusion test facility must satisfy certain critical requirements in order to obtain meaningful information from nuclear tests.
CONCLUSIONS
(CONTINUED)

- Nuclear test requirements are being quantified in FINESSE. Benefit/cost/risk analysis is planned.

EXAMPLES OF PRELIMINARY REQUIREMENTS

- **Wall Load**
 - Minimum: > 1 MW/m²
 - Substantial benefits: 2-3 MW/m²

- **Surface Heat Load**
 - Critical for tests of first wall, solid breeder blankets, liquid metal blankets
 - Tokamak commercial reactors will have > 80% of α power on the wall
 - Needed in test facility: > 15% of P_{nw}
 - Non-standard means required to enhance surface heat flux in fusion test facilities, particularly mirrors

- **Plasma Burn Cycle**
 - Pulsing sharply reduces the value of many tests.
 - Prefer steady state.
 - Burn time: > 1000 s - Dwell time < 40 s

- **Minimum Continuous Time**
 - Many periods with 100% availability.
 - Duration of each period: several weeks
CONCLUSIONS
(continued)

- **Fluence**
 - Should be driven by the value of what we learn from **component** tests (not by structural material specimen tests).
 - Higher fluences are desirable but costly.
 - Modest fluences are still extremely valuable.
 - Critical: 1-2 MW·y/m²
 - Very Important: 2-4 MW·y/m²
 - Important: 4-6 MW·y/m²

- **Largest Size of Test Element**
 - Interactive tests (submodule): ~ 0.2 m x 0.2 m x 0.1 m
 - Integrated tests (module): 1 m x 1 m x 0.5 m

- **Test Surface Area**
 - Critical: > 5 m²
 - Very Important: > 10 m²
 - Important: > 15 m²

FINESSE
CONCLUSIONS
(continued)

- The selection of a scenario for fusion development involves complex issues that require further examination:
 - Physics testing requires large device power, low fluence (tokamak)
 - Nuclear testing requires low device power, high fluence
 - Combining large device power and high fluence in a single device introduces serious demand for large tritium supply
 - Supplying tritium requires large-coverage breeding blanket

- Installing a large-coverage breeding blanket without prior fusion testing raises many difficult issues:
 - Low device availability likely
 Longer time to achieve fluence goals
 - Higher risk in achieving mission?
 - Higher cost

- There are considerable incentives to examine the scenario of two parallel devices, one for physics and the other for nuclear technology
 - Can we design a low power (< 50 MW), high wall load device?
 - TMR?
 - Small tokamak (with copper coils, driven plasma)?