Research Thrust to Address PMI Knowledge Gaps for DEMO

PMI Working Group:

Presentation at:
PMI Research Needs Workshop at UCLA
4-Mar-2009
A Near-term Research Thrust is Needed to Address the PMI Knowledge Gaps

• Review of the knowledge gaps
• Scientific issues to be addressed by research thrust
• A multi-faceted approach
 — Additional emphasis on modeling (Krstic, Brooks)
 — Additional emphasis on existing test stands
 — New facility

• An Advanced Linear PMI Facility coupled with an enhanced modeling effort can cost effectively address many of the PMI knowledge gaps
 — Contributions in all PMI areas: PWI, PFC, IC

• Possible facility features and concluding remarks
The Divertor Requirements in DEMO Go Well Beyond ITER

ITER conditions: Pulsed, Low T, C, Be, W

Plasma Interaction in Divertor
- \(n_e = 10^{21} \text{ m}^{-3} \)
- \(T_e = 1-10 \text{ eV} \)
- \(\Gamma_{D,T} = 10^{24} \text{ m}^{-2} \text{ s}^{-1} \)
- \(q_{\text{div}} = 10 \text{ MW/m}^2 \)

DEMO conditions:

Similar to ITER with:
- Steady-state
- elevated temperature (600 C cooling)
- Refractory metals
- Neutron irradiation (up to 100 dpa)

Parameter range is inaccessible in present tokamaks and PMI experiments
Proposed Research Thrust Will Address PMI Knowledge Gaps

• Erosion/redeposition – fundamental understanding of the complexity of multi-species plasma and mixed materials (PWI)
• Tritium retention and permeation – processes leading to surface retention and bulk permeation (PWI, PFC)
• Radiation transport - high density optically thick plasmas expected in a DEMO environment (PWI)
• Periodic off-normal heat-flux and energetic particle bombardment (PWI, PFC, IC)
• PFC component lifetime and heat transfer – unprecedented exposures to high heat flux and durations will challenge PFC design (PFC)
• Neutron irradiated materials – effect of high neutron fluence on PFC and internal component properties (PWI, PFC, IC)
• Development of new materials and concepts (PWI, PFC, IC)
Plasma Wall Interactions

Example: hydrogen plasma and carbon target

Material surface is changed by plasma contact:

- Deposition of thin films, thick films
- Material mixing at the surface (in case of metals: alloys)
- Morphology of surface changes (in case of refract. metals: cracking of surface)
- Re-deposited layers flake off and become dust
- Eroded and flaked off material itself has impact on plasma (radiation losses etc.)
PWI Gaps vs. Tools to Develop Understanding and Control; Version 2.3

General Requirements on the Tools

<table>
<thead>
<tr>
<th>SOL and Divertor Plasma</th>
<th>Theory & Modeling</th>
<th>Existing/Upgraded/New Test Stands</th>
<th>Existing/Upgraded Confinement Facilities</th>
<th>New Confinement Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impurity transport Radiation transport He pumping</td>
<td>ELMs & Disruptions Off-normal heat flux Energetic electrons Dust production Impurity injection</td>
<td>3-D MHD, two-fluid, & kinetic models including runaways. Control techniques such as edge ergodicity, stimulated edge transport and small ELMs.</td>
<td>Tests of impacts of Demo-relevant off-normal events. Tests on neutron-irradiated materials.</td>
<td>Tests of advanced models and control techniques. Scenario development with focus on stability.</td>
</tr>
</tbody>
</table>

Research Thrust

Hillis PMI Renew - 6
Fundamental Science is the basis for a long-term PMI research program:

Understanding and control of PMI processes

Efficient energy conversion

Urgent, critical issues

Machine and mission specifics:

ITER
- Dynamic surface, C+Be+W?
- \(\langle T_{\text{wall}} \rangle \sim 100 \, ^\circ\text{C}, \text{cycling}\)
- Pulse \sim 400 \, \text{seconds}
- Tritium uptake & removal

DEMO
- Refractory metal surface (W?)
- \(\langle T_{\text{wall}} \rangle > 600 \, ^\circ\text{C}\)
- Steady-state operation
- Blistering, nanostructure
- Tritium permeation & retention
- High neutron fluence
“Atomistic” Molecular Dynamics (MD) Successfully Models Chemical Sputtering in Basic Beam-surface Experiments

Selected projectiles
- Ion, atom, molecular beams
- External control of mass, kinetic & internal energy, angle

Prepared target
- Composition, morphology, band structure, hydrogenation
- Known history, temperature

Products
- Erosion & implantation
- Particle reflection & sputtering

Thursday PMI Presentations
P. Krstic, J. Brooks, et al.
- Need for theory validation
Modelling of High Flux Plasma-wall Interaction is Complicated by Surface Response to Plasma Bombardment

Incident plasma
- Multi-species, multi-state plasma
- Multi-component, multi-directional distribution function

Evolving target
- History of irradiation, heating
- Surface deposition & damage

Products
- Particle reflection, implantation, sputtering
- Synergetic surface chemistry

No retention model available
No data for Be, W for T > 300 °C

Retained deuterium concentration in C, Be and W co-deposition conditions (J. Roth et al., PPCF 50 (2008)103001)

Hillis PMI Renew - 9
Comprehensive PMI diagnostics needed!

Impinging plasma

- plasma constituent energy
- species distributions

\[T_e, T_i, n_e \]

LP’s, Thomson Scattering

- impurity content,
- hydrogenic constituents,
- \(v_{\text{vib}}, v_{\text{rot}}, T_i \)

RFA

Interaction products

- mass velocity distributions
- erosion products,
- internal state distrib’s,
- velocity & angular distrib’s

TOF, QMS

Visible Spect.

IR

LIF

UV and visible Raman,
AFM, XPS, SEM, AES

- hydrogen retention
- hydrocarbon precursor concn’s

TDS or TPD

- surface temperature profile
 multi-frequency pyrometry

Target

- surface morphology,
- carbon hybridization, \(\text{sp}^3/\text{sp}^2 \)
- content, chemical composition
- bonding

RFA – retarding field analyzer
LP – Langmuir probe
AFM – atomic force microscopy
XPS – X-ray induced photon spectroscopy
TDS – thermal desorption spectroscopy
TPD – thermal programmed desorption
SEM – scanning electron microscopy
AES – Auger electron microscopy
DEMO Makes It Necessary to Study PWI and PFCs in a Nuclear Environment

- Production of radiation-induced defects (vacancies, interstitials, traps, …)
- Changes of microstructure – including surface
- Change of chemical composition (transmutation, He production)
- Degradation of PFC material properties:
 - ductility (hardening)
 - He embrittlement
 - Thermal conductivity
 - Swelling

See Theme IV talks by Kurtz, Stoller, …

W after 4He impact and plasma erosion (Koidon)
Neutron Irradiation Alters Bulk PFC Properties

• Need to test *neutron irradiated and toxic* plasma facing and internal components under high heat loads and plasma exposure to prepare for DEMO
 – PMI processes (Erosion, fuel retention and dust formation)
 – Thermo-mechanical properties of PFCs (fatigue, shock resistance)
 – Modification of bulk heat transfer properties
 – Testing of the integrity of coatings, brazes, welds for cooling lines, etc. for internal components

• Need to perform tests under simultaneous high heat loads
 ~ 10 MW/m² and high surface temperature ~ 600 °C
Methods to Address the Gaps in PMI Knowledge

<table>
<thead>
<tr>
<th>PMI Gap</th>
<th>Non-plasma Experiments</th>
<th>Existing Linear Test Stands</th>
<th>Advanced Linear Test Facility</th>
<th>Dedicated Toroidal Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamental Interactions</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOL Transport</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Tritium Retention</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Erosion & Redeposition</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Radiation Transport</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>New Materials</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PFC Lifetime and Heat Transfer</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Neutron Damaged Materials</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Proposed Thrust to Address the PMI Gaps

- Fundamental PMI Physics
- Computation and model verification
- Hydrogen retention in plasma facing components
- Erosion and Redeposition
- Surface science
- Material transport and dust
- Advanced Linear Facility
- Plasma physics in strongly coupled regime
- Lifetime of plasma facing components
- Neutron irradiated material effects
- Contributions from Toroidal Facilities: DIII-D, C-Mod, NSTX, JET, …
Linear Test Facility Required R&D Capabilities

- Particle fluxes > $10^{23}/m^2/s$, parallel heat flux up to 40 MW/m²
- Large plasma area ~100 cm² applied to inclined surfaces at elevated T
- Powerful plasma source and RF heating for $n > 1-3 \times 10^{19} \text{ m}^{-3}$
- Ability to test hazardous materials and neutron irradiated samples
- Variable B > 1 T
- Heat pulses (~ few ms time scale for ELM simulation)
- Progressively longer plasma durations 10^3 s, eventually to 10^6 s.
- In-situ and ex-situ PMI diagnostics; plasma diagnostics
- Multi-scale Monte-Carlo computer modeling for data interpretation

Suggests

- Use Helicon plasma source without internal electrodes
- Plasma device placed inside a Hot Cell
Possible Features of a Linear PMI Test Facility

- Helicon antenna
- Cooled ceramic cylinder
- Ion cyclotron antenna
- EBW heating region
- Target

• Example shows $|B| \sim 2.8$ T at target with 10 cm perpendicular spot size, for $|B| < 1$ T in 20 cm diameter helicon source. High density plasma operation at lower $|B|$ is also possible

• Multiple coils provide flexibility in magnetic field profile and target parameters

Hillis PMI Renew - 16
Proposed Facility Will Use a Helicon Plasma Source

- Usually consists of a source tube with gas injected into it, surrounded by an antenna and a solenoid producing an axial magnetic field.

- At high plasma density, antenna couples power by launching circularly polarized electromagnetic wave along magnetic field which damps through electron collisions.
Why use a Helicon Plasma Source for a PMI Test Facility?

- Helicon plasma sources couple power through rf waves and have no internal electrodes
 - Results in low impurity generation
 - Allows for true cw operation with no need to replace internal components

- Large diameter plasmas can be produced – 10 cm is a typical diameter

- Plasma production is much more efficient than with other RF sources. Power is coupled through an electromagnetic wave that directly heats the core plasma

- Helicon axial magnetic field geometry is compatible with application of additional ion cyclotron heating (ICH) – high efficiency single pass ICH in a helicon produced plasma stream has been demonstrated experimentally

- High performance helicon operation with light ions including H, D, and He, with plasma density > 10^{19} m$^{-3}$ and gas utilization efficiency η_g (= ions out/atoms in) approaching 100% has been achieved, making it worthwhile to develop this type of plasma source for use in a PMI linear test facility
Prototype Under Development: High Particle Flux at High Magnetic Field

- Maximum source diameter limited to 15 cm due to size of bore of existing magnets to be used in the project.

- 1 T magnetic field in a 15 cm diameter plasma production region maps to ~ 2.25 T in a 10 cm diameter target region. A slightly larger, 20 cm diameter source would map to 4 T.

- Achievable particle flux:
 - Best light-ion results to date are from VASIMR: 4×10^{20} s$^{-1}$ total flux at ~ .15 T, 20 kW input power (deuterium). Have also achieved $> 10^{21}$ s$^{-1}$ with Ar, 30 kW input power
 - Goal for this project is 2×10^{21} s$^{-1}$ with up to 100 kW input power
 - Corresponds to average flux of 2.5×10^{23} m$^{-2}$ s$^{-1}$ over 10 cm diameter target
 - Requires ~4.8 sls (standard liters per second) input gas flow with 100% gas utilization

Currently being addressed at ORNL with internal funds
A Hydrogen Helicon-based Negative Ion Source is Presently Being Tested at ORNL for Possible Use on the SNS

High density hydrogen plasma operation

Rf antenna
A Near-term Research Thrust is Proposed to Address the PMI Knowledge Gaps

• A multi-faceted approach
 — Requires a strong theory and modeling effort
 — Supported by experimental validation on existing devices
 — An Advanced Linear PMI Facility will cost effectively address many of the PMI knowledge gaps
 — Contributes to all PMI areas: PWI, PFC, IC

• The envisioned New PMI facility would complement and extend the capabilities of current PMI facilities, such as PISCES

• Promotes US competitiveness in the PMI area

• The new PMI facility is foreseen to be a user facility, whose final design is developed through PMI community participation
Facility Parameters

| Facility | n_e^sep | n_e^div | T_e^sep | T_e^div | $q_{\text{div}}^\text{max}$ | $L_{||}$ |
|----------|----------------|----------------|----------------|----------------|----------------|---------|
| C-Mod | 1-3 | 0.5-20 | 40-80 | 0.5-25 | 10? | 2-15 |
| DIII-D | .01-0.2 | .1-10 | 30-80 | 0.5-40 | 6-7 | 5-50 |
| NSTX | .03-1 | .1-2 | 20-50 | 0.5-30 | 12-15 | 1-20 |
| Linear | | | | | | |

C-Mod: LaBombard PoP 1995, DIII-D & NSTX from various sources
From Greenwald panel report:

The plasma material interface:

The state of knowledge must be sufficient to design and build, with high confidence, robust material components which interface to the hot plasma in the presence of high neutron fluences.

…which can convert fusion products to useful forms of energy in a reactor environment, including a self-sufficient supply of tritium fuel.

Plasma wall interactions:

Understanding and control of all processes which couple the high-performance plasma to its immediate surroundings