A Fusion Development Facility to Test Divertor and PFC Solutions for DEMO

Presented at the ReNew Theme III workshop; Taming the Plasma Material Interface
UCLA, March 4-6, 2009
Significant Gaps from ITER to DEMO for PFC Solutions

- **Erosion and material migration**
 - Higher power density and higher duty cycle
 - More aggressive heat flux control required
 - Tons of PFC material will be eroded and redeposited

- **Tritium fuel cycle**
 - DEMO must breed its own tritium
 - Only small fraction of injected tritium fuel can remain in device

- **High temperature**
 - Blanket temperature ≥ 600 °C required for efficient electricity generation
 - PFC characteristics fundamentally change at high temperature

- **Off normal events**
 - Disruptions must be eliminated, or substantially mitigated
 - ELMs must be essentially eliminated
A RESEARCH Facility for PFC Development is Needed to Bridge the Gaps to DEMO

A PFC research facility should encompass:

• **Tritium breeding**
 – PFC issues are central to obtaining TBR >1; Thin PFCs for neutron flux to blankets, tritium retention and permeation in PFCs

• **High power density and duty cycle**
 – Tests of heat flux control solutions compatible with high core confinement
 – Test designs to handle large levels of gross and net erosion and redeposition
 – Develop diagnostics for monitoring PFC erosion and integrity

• **High temperature**
 – Tritium retention and permeation change drastically at high temperature
 – PFC surface properties, reworked by the plasma and neutron, may change at high temperature

• **High neutron fluence**
 – Capability to test PFC designs, material and surface properties to >20 dpa

• **Flexibility**
 – Ability to change out and test alternative PFC materials and designs
FDF is a research facility to address the PFC gaps to DEMO

- **Compact**
 - Utilize AT physics for a high power density device at modest size, ~1.3 x DIII-D

- **Helium cooled PFCs**
 - Optimize vessel and PFC temperatures
 - Other options possible

- **Steady state**
 - 2 week discharges, 30% duty cycle over a year

- **High density**
 - Enhanced radiative dissipation

- **Flexibility with removable TF**
 - PFCs assembled outside vessel
 - Divertor and other PFCs can be changed in timely manner
FDF Can Conduct a Broad and Flexible Research Program

- **Test a variety of PFC materials**
 - Possible carbon PFCs for initial operation and discharge optimization; Oxygen bake for periodic cleanup
 - All potential materials can be installed and tested W, Mo, RAFM, engineered BW, flow through C
 - Large volume of PFC material will be eroded and redeposited with unknown characteristics
 - Complete surface inspection, and possible replacement at regular intervals

- **A number of PFC designs can be tested**
 - Swirl tubes and hypervapators for heat removal
 - Joining of PFCs to heat sink; Brazing, mechanical clamping, etc.

- **Heat flux solutions**
 - High density for radiative heat flux dissipation
 - Compatibility of radiative divertors with optimized core confinement
 - Precision divertor alignment to maximize use of flux expansion
 - Innovative divertor configurations for increased flux expansion; Super-X
FDF Research Capability (cont.)

- **Tritium retention**
 - Tritium retention decreases significantly at higher temperature
 - Tritium diffusion, permeation, in high Z metals increases at high temperature
 - Surface properties at high temperature may limit flux of tritium into bulk
 - Optimal operating temperature for tritium control very uncertain

- **Tritium breeding**
 - Credible PFC designs for net tritium breeding can be tested
FDF Research Capability (cont.)

- **Component lifetime tests**
 - 20-40 dpa in a 5 year operating period can test material integrity of PFC materials.
 - Effects of neutrons on eroded and redeposited PFC material can be examined.

- **RAMI**
 - High duty cycle over years required high reliability and availability.
 - Maintenance techniques can be developed.
 - Diagnostics important for evaluating erosion, tritium retention and PFC integrity.

Neutron induced shrink/swell in N3M graphite

End of lifetime

Staged Schedule for Experimental Approach

- **Startup phase; 4 years**
 - Shorter pulses for system checkout
 - Optimize performance with PFCs forgiving to off normal events

- **1st experimental phase; 5 years, 12 dpa**
 - Begin steady state operation
 - Conservative PFC and blanket design for initial evaluation

- **Maintenance; 2 years**
 - Install DEMO relevant PFC, divertor and blanket systems

- **2nd operation phase; 5 years, 25 dpa**
 - Test performance of DEMO relevant PFC designs

- **Maintenance; 2 years**
 - Install optimized PFC designs

- **3rd operation phase; 5 years, 40 dpa**
 - Final testing of PFC, divertor and blanket designs for DEMO
A Staged Research Plan for Increasingly Optimized Operation

<table>
<thead>
<tr>
<th>START UP</th>
<th>FIRST MAIN BLANKET</th>
<th>SECOND MAIN BLANKET</th>
<th>THIRD MAIN BLANKET</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>D</td>
<td>DT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fusion Power (MW)</th>
<th>0</th>
<th>0</th>
<th>125</th>
<th>125</th>
<th>250</th>
<th>250</th>
<th>250</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{N}/A_{WALL} (MW/m²)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse Length (Min)</td>
<td>1</td>
<td>10</td>
<td>SS</td>
<td>SS</td>
<td>SS</td>
<td>SS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duty Factor</td>
<td>0.01</td>
<td>0.04</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>T Burned/Year (kG)</td>
<td>0.28</td>
<td>0.7</td>
<td>2.8</td>
<td>2.8</td>
<td>4.2</td>
<td>4.2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Net Produced/Year (kG)</td>
<td>-0.14</td>
<td>0.56</td>
<td>0.56</td>
<td>0.84</td>
<td>0.84</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Blanket</td>
<td>He Cooled Solid Breeder Ferritic Steel</td>
<td>Dual Coolant Pb-Li Ferritic Steel</td>
<td>Best of TBM RAFS?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBR</td>
<td>0.8</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Blankets</td>
<td>1,2</td>
<td></td>
<td>3,4</td>
<td>5,6</td>
<td></td>
<td>7,8</td>
<td>9,10</td>
<td></td>
</tr>
<tr>
<td>Accumulated Fluence (MW-yr/m²)</td>
<td>0.06</td>
<td>1.2</td>
<td>3.7</td>
<td></td>
<td></td>
<td>7.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>