Internal Components Research

FDF Will Complete the Technology Development Path to DEMO for Internal Components

R.W. Callis

Taming the Plasma Material Interactions Theme Workshop

US Department of Energy OFES Research Needs Workshop (ReNeW) University of California, Los Angeles

March 2–6, 2009
Internal Components are Those Items in the High Neutron Fluence Zone that are not Shield Blankets, PFCs or Divertors

- In general, Internal Components are structures or subsystems just behind the First Wall and inside the envelope of the Vacuum Vessel.

- **Internal Components are:**
 - The front end of Diagnostics
 - RF antennas
 - Microwave launchers
 - Control & stabilizing coils
Diagnostics will be Severely Challenged in the Burning Plasma Era of Fusion Energy Research

- **Environmental issues:**
 - Large nuclear radiation field (neutrons and gammas)
 - Large particle flux and fluences (ions and neutrals)
 - Large stray microwave field

- **Access:**
 - Limited number of access ports
 - Minimum penetrations through shielding (labyrinths)

- **Reliability:**
 - Robust systems (mechanical, electrical, etc)
 - Functional for long periods (e.g. weeks)
 - Capable of maintaining calibration without direct intervention or down time
 - Error-free systems as inputs to control systems
RF Techniques for Plasma Heating, Current Profile Control, Rotation Control, MHD Stability Control for DEMO Faces Significant Challenges

- **Compatibility with cw high heat loads**
 - Launchers will be required to operate at +700°C
 - RF launchers are large, requiring a significant penetration of the breeding blanket
 - Requires antenna to have high power density levels (arching concern)
- **Compatibility in nuclear environment**
 - Antennas will need to be from materials not presently used in launchers, and potential poor RF conductors
- **Low impurity generation**
 - Boronization to minimize impurity generation not feasible for DEMO
- **Sufficient EM-plasma coupling without arcing**
 - Good coupling to plasmas leads to close proximity of launching structure to the SOL
 - Increases the likelihood of arcing
 - Power coupled to the SOL ends up in concentrated spots which could experience damage and melting
- **RAMI**
 - Operational reliability and survivability are unknown and unproven
Present Designs of Microwave Antennas May Not Survive in a Fusion Reactor

• Microwave Antennas are complex structures
 – Tracking of NTM islands requires the final mirror to be steerable
 • Places rotating joints in a high heat, high neutron fluence environment
 – Final Mirror is close to the plasma edge and experiences the full EM loads from disruptions and VDEs
 • Steering mechanism has to be designed for high mechanical loads, which may compromise slew speed
 – Fusion reactors require ECH & ECCD frequencies of +200 GHz
 • Last mirror must have a high conductivity surface, owing to the shallow skin depth ~0.15 micron
 ❖ Surface is prone to neutron degradation and/or impurity contamination

ITER ECRF Upper Launcher
Are Control Coils Feasible in a Fusion Reactor Environment?

Environmental issues:
- High neutron fluences impacts the choice and use of high conductivity metals
 - Metals loose conductivity under neutron exposure
 - Metals are imbritted from neutron exposure
 - Nuclear heating adds to the heat load needing removal
 - Shielding of coils to reduce neutron exposure requires higher coil currents to create the effect of a coil near the SOL
 - Results in high loads and increased cooling requirements
- High neutron fluences may limit the choice of insulating material
- Coils may experience high electromagnetic forces from disruptions and VDEs

Access:
- Coils will need to be located under the shielding blocks making remote maintenance time consuming
- The more flexible the control coil system the more penetrations of the vacuum vessel will be required

Reliability:
- Robust systems required owing to the poor access for remote maintenance
- Functional for long periods (e.g. weeks)
Components Will Need to Be Qualified Prior to the Design of DEMO

- The licensing of DEMO will require a high level of documentation that components can meet all the safety requirements and has demonstrated effective reliability and maintainability
 - Materials will need to be prequalified for use in an neutron environment
 - Validation of theory and modeling on test stands
 - Validation of system design and performance on an operating device (most likely non-nuclear)
 - Validation of performance under high neutron and heat fluences
 - Accumulation of operational data for RAMI classification
Reliability, Availability, Maintainability and Inspectability

- RAMI is critical to DEMO in order to demonstrate the productive capacity of fusion power and validate economic assumptions.
 - Demonstrated high availability using Remote Maintenance is essential
 - Continuous operation of two weeks to a month at a time
 - Reasonable mean-time-between-failure
 - Availability of 20% to 50% must be achievable
 - ITER is 10%
 - Component replacement with short down time (mean-time-to-repair)
 - Full reparatory of specialized remote handling tools and end-effectors developed and available
 - Demonstrated ability of in vessel inspection
 - Erosion evaluation, leak detection, metrology, etc.
The Gaps in Internal Component Technology are Large and will Take an Integrated Program to be Successfully Closed

- All of the internal components to be used in DEMO must pass through a rigorous development cycle:
 - Physics, Theory & Modeling
 - Improve the science underpinnings of Internal Component (IC) technology
 - Including interaction of the ICs with the plasma
 - Technology Development
 - Exploration of potential solutions to key gap areas
 - Existing/Upgraded/New Test Stands
 - Validation of new concepts
 - Existing/Upgraded/New Non-DT Confinement Facilities
 - Validation of nuclear grade component performance in a reactor plasma environment (without the hassle of activation)
 - New DT Confinement Facilities
 - Integrated system testing in a neutron environment at cw conditions
To Complete the Internal Component Research Program a DT Facility that Produces Reactor Grade Plasmas is Needed

- The Fusion Development Facility (FDF) is an ideal device to validate the internal components needed for DEMO
 - Neutron fluxes of 1–2 MW/m²
 - Duty factor of 0.3
 - Auxiliary heating of ICRF, LH, ECRF and NBI
 - Internal coils for ELM and RWM suppression, and possibly plasma rotation
 - Diagnostics

- FDF can produce fluences of 3–6 MW-yr/m² in ten years of operation onto complete internal component prototypes
 - With these fluences FDF can make a significant contribution on relatively large, fully integrated and engineered components.
DEMO Relevant Internal Components will be Needed to Operate the FDF Tokamak from Day One

- It is expected that over the lifetime of FDF the internal components will evolve into designs with more capability and robustness.
- Other components can be validated in the test ports provided as part of the FDF mission,
 - This allows the testing of different designs for extended periods, and under different temperatures and cooling methods
 - Both liquid metals and gas cooling can be explored, with temperatures as high as 900°C