Overview

- The Liquid Metal MHD facility and diagnostics

- Current experimental studies: The manifold experiment
 - Flow distribution
 - Abrupt expansion/contraction problems

- Near future plans: MHD mixed convection
 - 3D to 2D flow transition
 - Quasi 2D turbulence (flow structure and transport properties)
The LM MHD facility

- Liquid metal loop (integrated MHD pump + heat exchanger)
- Magnet (1.8 Tesla uniform at about 5%)
- Diagnostics
 - Low voltage data acquisition system with cold junction compensation (up to 128 channels at up to 10kS/s sampling rate)
 - Differential pressure transducer
 - Ultrasound Doppler Velocimeter
Diagnostics in LM MHD flows

- Velocity: Optical techniques used in fluid mechanic experiments cannot be applied due to the opaqueness of liquid metals
- Pressure: usual techniques apply with some adjustments
- Temperature: usual techniques apply

Two key non-dimensional numbers in MHD

 Hartmann number \((Ha^2=electromagnetic/viscous)\): \(Ha = BL\sqrt{\sigma/\rho v}\)
 Interaction parameter \((N=electromagnetic/inertia)\): \(N = Ha^2/Re\)

For \(Ha \gg 1, \ N \gg 1\) (core + viscous boundary layers)
- No geometrical, electrical or magnetic singularities + non-conducting (or poorly conducting) Hartmann walls: the flow is quasi two dimensional \(i.e.\) flow characteristics do not change in the magnetic field direction except in thin boundary layers
Consequence: the 2D velocity field can be derived from wall electric potential gradients measurements (inductive velocimetry)

\[u_{\perp}^{core} \times B = \nabla \phi^{Ha} \]

- If **one** of the above conditions is not fulfilled: **flow is 3D**

There are not many available non-intrusive techniques to characterize the velocity field...

Ultrasound Doppler velocimetry: *probably the most promising*...

Also

Velocity reconstruction from the induced magnetic field: still in early stages of development

Both inductive and Ultrasound Doppler Velocimetry techniques are used in our Lab.
The manifold experiment

- Three parallel rectangular channels stacked in the direction of the magnetic field
- Flow supplied by a single channel that expands abruptly into a larger channel (symmetrical contraction element used to collect the flow downstream)
- All walls are electrically insulated

<table>
<thead>
<tr>
<th></th>
<th>m</th>
<th>Width (b)</th>
<th>Depth (h)</th>
<th>Length (l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet channel</td>
<td>0.025</td>
<td>0.02</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Large channel</td>
<td>0.1</td>
<td>0.02</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Parallel channels</td>
<td>0.03</td>
<td>0.02</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>Outlet channel</td>
<td>0.025</td>
<td>0.02</td>
<td>0.105</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ITER TBM</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic field [Tesla]</td>
<td>4</td>
<td>1.8</td>
</tr>
<tr>
<td>Typical inlet velocity [m/s]</td>
<td>0.3</td>
<td>0.02 – 0.6</td>
</tr>
<tr>
<td>$Ha = B(b_L/2)\sqrt{\sigma/\rho v}$</td>
<td>7500</td>
<td>2430</td>
</tr>
<tr>
<td>$Re = v_o h/\nu$</td>
<td>$2 \cdot 10^5$</td>
<td>$4 \cdot 10^3 – 1.2 \cdot 10^5$</td>
</tr>
<tr>
<td>N</td>
<td>280</td>
<td>34 – 1000</td>
</tr>
</tbody>
</table>
- Working fluid is circulated using an actively cooled conducting MHD pump
- No three dimensional effects associated with the frigging field regions
- Minimum liquid metal inventory

- Integration of Ohm’s yields:
 \[\frac{\Delta \phi}{h} = \nu_m B \]

- The influence of the velocity profile on the potential readings is cancelled out by matching the electrode dimensions to the full width of the channel
For $Ha>1000$ and $N>90$ the flow is found to be uniformly distributed (about 5% unbalance)
Let’s have a closer look...

Flow asymmetry

Re, Re_c, Re_l

x 10^4

Ha=421

x 10^4
Let’s plot the cumulated relative flow unbalance vs. Re...

Extremum indicates two or more concurrent mechanisms
A possible explanation...
At least three concurrent mechanisms can affect the flow division

Pressure drop:
The pressure drop in the parallel channels, where the flow is likely to be quasi-2D, scales differently than the pressure drop associated with the expansion/contraction regions. At small Ha and Re numbers, the pressure drop in the channels becomes comparable to the overall pressure drop, and any small flow differences between the channels may lead to a strong unbalance

Flow properties in the expansion and contraction elements (Ludford layers):
Due to the change of the axial velocity at the expansion/contraction regions, axial electric currents appear and are responsible for additional pressure drop and for a strong modification of the flow structure

Two-dimensionalization of the flow in the expansion region:
A simple comparison between the time scale associated with the 2-dimensionalization mechanism, $\tau_{2d} = (\rho/\sigma B^2)(b^2/l^2_\perp)$, and the time needed by the liquid to travel from expansion to the parallel channels, indicates that the velocity profile is likely to be quasi-2D at the onset of the dividing channels
- 3D flow characterization is underway
 - Flow distribution
 - Abrupt expansion and contraction

- Some minor modifications of the test article were needed in order to ensure a good acoustic coupling between the ultrasound probes and Hg

- Non-MHD flow characterization in the same geometry is now being addressed as a part of the process towards understanding the physics of this type of flows and also for providing reliable data base
Next Experiment: mixed convection

- Single-wall heated cavity (3 adiabatic walls). All walls are electrically insulated
- Heat evacuated through pump electrodes
- Test article is being designed (heating system, probe locations, hot Hg handling etc.)

Quasi-2D
Turbulent Velocity and Temperature fields will be simultaneously measured using a modified thermocouple ($< u'T' >$ $< u'v'T' >$ etc.)

3D and transition from 3D to 2D
Ultrasound Doppler Velocimetry